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ABSTRACT. In this article, the necessary and sufficient conditions for the 

hyponormality of Toeplitz operator Tφ with a trigonometric polynomial symbols 

φ on Hardy space are explored. And we use algebraic spectral properties of 

Toeplitz operator on Hardy space to characterize normal and hyponormal 

Toeplitz operators with polynomial symbol.Also we shows some new 

phenomenon in the spectral theory of Toeplitz operator on the Bergman space. 

 

INTRODUCTION 

An elegant and useful theorem of C. Cowen [7] characterises the hyponormality 

of a Toeplitz operator Tφ on the Hardy space H^2 (T) of the unit circle T ⊂ C by 

properties of the symbol      ( ) This result makes it possible to answer an 

algebraic question coming from operator theory { namely, is Tφ  hyponormal?      

- by studying the function φ itself. In a recent paper [18] of T. Nakazi and K. 

Takahashi, Cowen’s method is carried out to obtain substantial new information 

about hyponormal Toeplitz operators and their symbols. In the present paper we 

study the hyponormality of T_φ  in the cases where φ is a trigonometric 

polynomial  (   )  ∑      
  ; the goal here is to find conditions on the 
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coefficients a_nthat are necessary and sufficient for Tφ to be hyponormal. This 

problem is still rather complicated in general; however, in this study we, are able 

to offer necessary and sufficient conditions for the normality and hyponormality 

of Tφ in the cases where the Fourier coefficients of φ satisfy certain extremal and 

symmetry properties. 

In 1909 H. Weyl examined the spectra of all compact perturbations A+K of a 

single hermitian operator A and discovered that    (   )for every compact 

operator K if and only if λis not an isolated eigenvalue of finite multiplicity in 

σ(A). Today this result is known as Weyl’s theorem, and it has been extended. 

from hermitian operators A to hyponormal operators and to Toeplitz operators by 

L. Coburn [4], and to seminormal operators by S. Berberian [1]. 

In this paper we determine properties of continuous functions ’ that imply that 

Weyl’s theorem holds for all analytic functions of the Toeplitz operatorTφ. 

This analysis entails an interesting new fact, which seems to be absent from the 

literature, concerning the continuity of the spectrum:    

In this study we, show that, when restricted to the linear manifold of all Toeplitz 

operators, the spectrum is a continuous (set-valued) function at every Toeplitz 

operator Tφ with quasicontinuous symbolφ. In fact, somewhat more general 

results are true. 

Let φ is trigonometric polynomial (   )  ∑      
    , to find conditions on the 

coefficients an that are necessary and sufficient for Tφ to be hyponormal.  

Let  HL  and  HK actually restates denote the algebra of bounded linear 

operators and the ideal of compact operators on a complex Hilbert space H , and 

let   denote the canonical map      HKHLHL /  . If  HLT  is a 

Fredholm operator that is,   T
  is invertible in    HKHL /   , then ker   

and ker  T  are finite
T . Dimensional and the index of  T  is the integer 

 TTTind kerdimkerdim  

The subset of  T   that is stable under compact perturbations is denoted by 

 Tw  and is called the weyl spectrum of T. 

The fredholm operators that have index zero are called weyl operators. The 

essential spectrum  Te  and the weyl spectrum  TW  are defined as follows: 

   : 1e T C T      is not aFredholm  operator } . 

   : 1w T C T     is not aWeyl  operator } . 

Clear      TTwTe    , although unlike e  and   the weyl spectrum of 

T need not satisfy the spectral mapping theorem .  

The Hilbert space  2L T
has canonical orthonormal basis given by the 

trigonometric functions   n

n zze    , for all Zn  . 
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The Hardy space  2H T
is the closed linear span of  .....1,0: nen . 

An element f is referred to as analytic if 
2f H  and Co-analytic if 

2 2f L O H . 

If P denotes the projection operator 
22 HL     , then for every ( )L  T  the 

operator T  on 
2H  defined by  

 gPgT    for all 
2Hg    Is called the Toeplitz operators with symbol   . 

 An operator T is said to be hyponnormal if its selfcommultator 

  *,T T T T T T  
is positive ( semidefinte ) . 

Theorem [1.C.C.Cowen] which characterize the hyponormality of Toeplitz 

operator requires one two solve acertain functional equation in the unit ball of 
H  . The spectral variation with in the Manifold M  of Toeplitz operators: Let K

be set with the Hausdorff metric of all compact subsets of C .The spectrum is a 

function   kHL :  mapping each operator T  to its spectrum  T . 

The function   is upper – semicontinuous and   dose have points of 

discontinuity. Let 
L , the operator T is point of continuity for the spectral 

function kL :  , where L is a subset of  2HL  consisting of all Toeplitz 

operators. 

The subspace    H C T T
 is a closed subalgebra of 

L . And the elements of 

the closed selfadjoint subalgebra CQ , which is defined to be  

        
         QC H C H C    T T T T

 
are called quasicotinuous functions . 

The subspace PC is the closure in  L T
 of the set all piecewise continuous 

function on  T
. 

Next, we chactrarize Toeplitz operator    with the symbol   on the Bergman 

spaces defined by       (   )  for f in Bergman space. 

And as a fundanmental problem concerning Toeplitz operators is to bdetemine 

the spectra interms of the properties of their symols. 

It is natural to study the spectra of Toeplitz operators with bounded harmonic 

symbols on the Bergman space. 

Let    denote the Lebesgue measure on the open unit disk   in the complex 

plane  , normalized so that the measure of the disk   is 1. 

The complex space   (    )  is a Hilbert space with inner product: 

                                       ∫
 

 ( )   (   )   (   )   

The Bergman space   
  is the set of those functions    (    ) in that are analytic 

  on. The Toeplitz operator      with the symbol   on the Bergman space is 
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defined by       (   )  for   in the Bergman space     
 ,   is an Orthogonal 

projection from   (    )  onto    
  , and       (     )     

 Notations: The Toeplitz operator   (  )    (     )      (      ) denote the 

spectrum and essential spectrum of The Toeplitz operator     , respectively. 

Let   denote the set of nonnegative integers. There is little characterization for 

the Topological structure of the spectrum of the Toeplitz operator with 

A bounded harmonic symbol, even if the symbol is the Harmonic function     

for an analytic polynomial  . 

Keywords: Toeplitz operator, Hyponormal, Hardy space, Bergman 

space,Harmonic polynomial, spectra , spectrum. 

METHODOLOGY 

In this study, we use algebraic spectral properties of Toeplitz operator on Hardy 

space to characterize normal and hyponormal Toeplitz operators with polynomial 

symbol that is Let    is a trigonometric polynomial of the from 

   ni
N

mn

n

i eae 



 , where ma  and Na  are nonzero ,then , T  is hyponormal 

when Nm   and m Na a  . Let
  




N

Nn

in

n

i eae 
 , where 0Na , and if 

0 1 1, ,... Nc c c C   are obtained from the coefficients of   by solving the 

recurrence relation: For   be the trigonometric polynomial 
   ni

N

Nn

n

i eae 



  , 

where 0Na  , and let 
Hk  satisfies 

 Hk  ,  then k necessarily satisfies  

    1 `

i nN N
i n

n n

n n

k a e a e H










 

   
       

 The computation of Fourier coefficients    ˆ ˆ0 ,..., 1k k N   of k is:   ,ˆ
ncnk   for 

n=0,1, …,N-1 , 

Where 0 1 1, ,... , Nc c c  are determined uniquely from the coefficients of   by the 

recurrence relation 
0

N

N

a
c

a


 

 
1

1

0

n

n N N n j N n j

j

c a a C a




   



 
 

 


 , for n=1, … , N-1 then the Toeplitz operator T  is 

hyponormal when  

1

0

1
N

j

j

c





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Also use spectral theory of Toeplitz operators with Harmonic polynomial symbol 

on the Bergman space to show some new phenomenon.  

Let   be a function in      ( ).Then the Toeplitz operator       is invertible 

on the Bergman space   
  if and only if the following two conditions hold: 

                                    (i)      has no zeros on the unit circle    ; 

                                    (ii)      has exactly one simple zero    in the open disk 

  which satisfies that 

                                                                                  
    (  )    

   

   
                              

                                   For any nonnegative integer  . 

Now we show that the spectrum of Toeplitz operator         is connected for 

every quadratic polynomial    . 

LITERATURE REVIEW 

Here a few essential fact concerning Toeplitz operator with continuous symbols 

need to begin with, using [8] R,G.Douglas The Hilbert space   ( )  has a 

canonical orthonormal basis given by the trigonometric function   ( )  

                 , and the Hilbert space   ( ) is the closed linear span of 

*          + . 

An element        is referred to analytic if        and coanalytic if    

        .If   denoted the projection operator         , then for every  

    ( ) , the operator        
   defined by 

                 (  )             
          (6) 

Is called the Toeplitz operator with symbol    . Every Toeplitz operator has 

connected spectrum and essential spectrum, and by [4] L.A.Coburn, 

  (  )    (  ) 

The set   ( )  of all continuous complex-valued functions on the unit circle   

and   ( )         are Banach algebras, and it is well - known that every 

Toeplitz operator with symbol     
  is subnormal .The              

generated by all Toeplitz operates     with     ( ) has an important property 

Which is very useful for spectral theory: the commutator ideal of   is the ideal 

 (  ) of compact 

Operators on    . As   ( ) and    (  ) are                           , 

then for every      ( ) , 

(   )     is a Fredholm operator if and only if   is invertible ; 

(    )            ( )   

 (    )   (  )     ( )   

Where    ( ) denotes the winding number of   with respect to the origin. 

Finally, we make note that if we make note that if      

We make note that if      ( )            is an analytic function defined on an 



Mohammed  Philip Roth Studies   233 

 

open set containing   (  )               ( )       (  ) , 

Is well-defined by the analytic functional calculus. 

It is known that the Weyl spectra of every hermitian operator and every normal 

operator consist precisely of all points in the spectra 

except the isolated eigenvalues of finite geometric multiplicity. “Weyl’s theorem 

for an operator” was first introduced by Coburn [34] in 1966, which says that the 

complement in the spectrum of the Weyl spectrum coincides with the isolated 

points of the spectrum which are eigenvalues of finite 

geometric multiplicity. Moreover, Coburn showed that Weyl’s theorem holds for 

all hyponormal operators and Hardy-Toeplitz operators [34]. Weyl type theorems 

with respect to isolated points of the spectrum of an operator were investigated 

for many cases and many classes of operators. Based on the characterizations for 

the spectra of Toeplitz operators in Theorems 2.4 and 4.1, we show in Theorem 

5.2 that the Bergman-Toeplitz operator       satisfies Weyl’s theorem, where q is 

an arbitrary function in the disk algebra in       ( ). 

Aim: This paper aims to investigate the conditions under which Toeplitz operator 

with symbols exhibit hyponormality on Hardy space by using algebraic spectra 

 Properties of it and also Investigate the structure of the spectrum of the Toeplitz 

operator on Bergman space. 

1. Necessary and sufficient conditions for Hyponormality with triagonometric 

polynomial symbols on Hardy space 

Theorem 1.1. If f is an analytic function on an open set containing  T  , then  

     TwfTfw              (`1) 

But if T hyponormal , then 

     TwfTfw                 (2) 

Remark 1.2. Every Toeplitz operator has connected spectrum and essential 

spectrum, and  

    TwT                                                                                                 (3)          

Remark 1.3. The sets  C T
 of all continuous complex-valued functions on the 

unit circle Tand   2H L H  T
 are Banach algebras. 

Theorem 1.4. Every Toeplitz operator with symbol 
H  is subnormal. 

Theorem 1.5. The commutator ideal of the 
C  - algebra V is the ideal  2HK  of 

compact operators on 
2H  . 

Theorem 1.6. Let  C T
 and  2/ HKV  are * - isomorphic 

C  - algebras, then 

for every  C  T
 , 

T  is Fredhdm operator if and only   is invertible                                       (4)   
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  nwTind   ,                                                             (5)   

   

   e T  T
                                                                       (6)   

    

Where  nw denotes the winding number of   with respect to the origin. 

   If  C T
 and if f is an analytic function defined on an open set containing

  T  , them  f o C T
 and  Tf  is well defined by the analytic functional 

calculus.  

Remark 1.7. Let   be the trigonometric polynomial 
   ni

N

Nn

n

i eae 



  , where

0Na  , and let 
Hk  satisfies 

 Hk  ,  then k necessarily satisfies  

    1 `

i nN N
i n

n n

n n

k a e a e H










 

   
      (7) 

 (i) The computation of Fourier coefficients    ˆ ˆ0 ,..., 1k k N   of k is:   ,ˆ
ncnk   

for n=0,1, …,N-1 , 

Where 0 1 1, ,... , Nc c c  are determined uniquely from the coefficients of   by the 

recurrence relation 
0

N

N

a
c

a


 

 
1

1

0

n

n N N n j N n j

j

c a a C a




   



 
 

 


 ,for n=1, … , N-1 (8) 

(ii) Therefore if  1 2,k k   , then    nknkcn 21
ˆˆ    for all 0,1,..., 1n N   

and 
  






1

0

N

j

j

jp Zczk
, the unique ( analytic ) polynomial of degree less than N

satisfying k H    . 

(iii) Conversely, if pk  is the polynomial 
  j

N

j

jp zczk 





1

0 , where 0 1 1, , ... Nc c c   are 

determined from the recurrence relation (8) , then for every integer 0n  , the 

Fourier coefficients  k n    of  k  satisfy  

1

0 0

0
N n N n

n j n j n j n j N n N

j j

k a c a a c a c a 
  

    

 

 
       

 
 

, 

Which implies that 
2

pk H   . But since pk    is a polynomial, it follows 

that pk H    . 
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Remark 1.8. However the relation (8) can always be solved uniquely to produce 

an analytic polynomial pk  satisfying pk H     , the polynomial pk need not 

be contained in the set    , even if    is known to be nonempty . 

Example 1.9. Consider the trigonometric polynomial

   22 22 iiiii eeeee  

 . 

Solving the recurrence relation (8) produces the polynomial 
 

1 3

2 4
pk z z 

 

which has norm 
1

4

5


pk
 making pk ineligible for membership in    . 

 On the other hand, a straight forward calculation show that the linear fractional 

transformation 

 
z

z

zb

2

1
1

2

1







  satisfies b H     , as b maps the unit circle 

onto itself , b has norm 1


b  . Thus  b   and so T  is hyponormal. And 

Fourier series of b , namely 

      ii

p

ni

j

n

ii ehekeeeb 







 



2 2

1

2

3

4

3

2

1
~

 , 

Converges uniformly on  T
to b and b is finite Blaschke product. 

Proof. 
  0 1 1, 0 , , ,...,

N
i i n

n N N

n N

e a e a c c c  



 
= 

N
o

N

a
c

a


 

 
 

1
1

, 1,..., 1
n

n N N N j N n j

i n

c a a c a n N




   



 
   

 


  

 
1

0 1 1

0

, ...
N

j

p j N

j

k z c z c c c






 
 ,  

2i
i N i z

N N iN

e
a e e a

e


 




 

  
  

  , 

2
2 2 i

iN i

N N iN

e
a e e a

e


 


  

 , 

2i

N iN

e
a

e










  

2

0 2

1 1

2 2

i i N

N

i N i

N

a e e
c

a e e

 

 

 



 
   

   ,    

   
1

1 1 0 1N N Nc a a c a


      

 
 

1

1 1 1

2
2

i
i N i

N N i N

e
a e e a

e


 




  

     
  

 

 
 

1

1 1 1

i
i N i

N N i N

e
a e e a

e


 



 

     
  

 

   

2

1 1 1

1 2 1 3

2 2 4

i i i

iN i N i N

e e e
c z

e e e

  

  

 

    

 
   

    iz e 
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0 1

1 3

2 4
pk c c z z   

 . satisfying pk H     , where  

   22 22 iiiii eeeee  

 
Theorem 1.10. suppose that   is a trigonometric polynomial of the from 

   ni
N

mn

n

i eae 



 , where ma  and Na  are nonzero . If T  is hyponormal , then 

Nm   and m Na a  . 

Proof . Suppose T  is hyponormal, then  is trigonometric polynomial under 

certain assumption about the conefficients 
 

N
i i n

n

n m

e a e 


 
where 0Na  , let k  

salisfies pk H     then necessarily salisfies (7) , then from (8) m N  . 

 
     1 2

1 2 ...
N

i m i mi i n i m i N

n m m m N m

n m

e a e a e a e a e a e a
    

   

     



     
 

Since ma and Na  are nonzero, let 0 1, , Nc c   be the solution of (8) because 

0Na   , we have N m m Nc a a   , then there is a function  k   such that 

  N mk N m c   thus 1 n m m Nk c a a 
    which implies that m Na a  . 

Proposition 1.11. If 
  




N

Nn

in

n

i eae 
 , where 0Na , and if 0 1 1, ,... Nc c c C   

are obtained from the coefficients of   by solving the recurrence relation (8) then 

the Toeplitz operator T  is hyponormal when  

1

0

1
N

j

j

c





        (9) 

Proof.  
 

1
1

0

0

, 1,..., 1
n

N
n N N n j N n j

jN

a
c c a a c a n N

a




   



 
     

 


 

 
N

i i n

n

n N

e a e 


 
 , 

 
1

0

N
j

p j

j

k z c z





satisfies pk H    from that 

1pk



, then 

1

0

1
N

p j

j

k c





 
, then    pk z    and so from the Cowen's Theorem T  is 

hyponormal .  

Remark 1.12. If 
  




N

Nn

in

n

i eae 
 where Nj aa 

 , for all 2,..., 1j N  , then 

from the recurrence relation (12) we have 

1 1
2 1

0

0 1

2
N N

n

j N n

j n

c c a D
 

 

 

  
 , 
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Where 

det
n N

n

n N

a a
D

a a

  
  

  . Therefore if  

1
21

1

2
N

n

n N N N

n

D a a a








 
 ,         (10) 

Then by proposition 1.11. , T  is hyponormal . Because the left – hand side of 

(10) depend on Na  and Na  and the right – hand side depends on 
2

Na  , it 

follows that T  is hyponormal whenever Na  is sufficiently large . In particular , 

the Toeplitz operator with symbol 
 iNe  is hyponoarmal whenever C is 

such that 

  NNnn

N

n

n aaaa  






1

1

12
  

Proof. Let 
 

N
i in

n

n N

e a e 


 
 and 

, 2,..., 1j Na a j N  
 from (8) 

2
2 1

1

2
N

N n

N n

nN

a
a D

a


 



 
  

 n n N N nD a a a a    

0
N

N

a
c

a


 (1) 

   
1

1 1 0 1N N Nc a a c a


             (2)  
 

1

1 1 1
N

N N N

N

a
c a a a

a

 
  

 
   

   

   
1

2 2 1 2 1N N Nc a a c a


           (3)     
1

2 2 1 2 1N N Nc a a c a


       

   
1

3 3 2 3 2N N Nc a a c a


           (4)     
1

3 3 2 3 2N N Nc a a c a


       

. 

. 

. 

 
1

1

0

n

n N N n j N n j

j

c a a c a




   



 
  

 


      (5) 

From (5) 

1

0

1
n

j

j

c





 

Remark 1.13. If 2 0Na a     , then the solution to the recurrence relation 

(12) is 0 2 0Nc c     and 1 1N Nc a a   , thus the analytic polynomial . 

Hk p  is    
1

1




N

Np zaazk . Therefore the norm of every 
 Hk  that 

satisfies 
 Hk  is such that 



238  Philip Roth Studies        Vol. 20 (2) 2024 
 

1

p

n

a
k k

a



 
 

. 

 Therefore, T  is hyponormal if and only if Naa 1  . 

The following theorem and corollary concern the extremal cases : 0 Nm aa  

Proof. 2 0Na a     . then the solution is 0 2 0Nc c     

1
1N

N

a
c

a


 

 , thus 

1

0

N
j

p j

j

k H c z






 
 , 

0
N

N

a
c

a


 since 

m
N m

N

a
c

a


 

 implies that 

21
1 2, N

N N

N N

aa
c c

a a

 
  

 implies 

2

0

1
N

j

j

c





 from the proposition (1.2.21) and 

1

0

1
N

p j

j

k c





 
 , since ,1 N nk c 

   thus 

1
p

N

a
k k

a



 
 

. 

Therefor , T  is hyponormal if and only if Naa 1  . 

Theorem 1.14. There exists a finite Blaschke product  b   of degree equal to 

the rank of   TT ,*

 . 

Theorem 1.15. Suppose that 
   in

N

mn

n

i eae 



 , where Nm   and 

0 Nm aa  , and let   H  be the subset of all 
Hk  for which 

1


k  and k H    . The following statements are equivalent . 

(i) The Toeplitz operator T  is hyponormal . 

(ii) For all 1,..., 1k N  , 

 

1

det 0
m k m

NN m

a a

aa

  

 

 
 

 
   . 

(iii) The following equation in 
mC  holds : 

11

2 2

N m

N m

N m

m
N

aa

a a

a a

a a

 

  





  
  
  
   
  
  
                    (11) 

(iv) 
    

1
N m

m Na a z 



. 

Moreover, if T  is hyponormal , then the rank of   TT ,*

 is mN  . 
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Proof . Let 0 1, , Nc c  be the solution to (8) ; because 
0 Nm aa

,we have 

1N mc   . Note that if Nm , then 0 1 0N mc c     . If a function k H   

satisfies k H    , then the Fourier series expansion of k is 

1

0

N
i j i n

j n

j n N

k c e b e 
 

 

  
for some set of nb C  . 

     From fact 2
kk 

  we have 
1N mk c 

 
 ; if for some  mNj   or 

Nn  there is a nonzero Fourier coefficient jc  or nb  of k , then 

 

2 2 2 2
max , 1N m j N m nk c c c b 

 
    

   . 

Thus 1


k  if and only if N mc   is the only nonzero Fourier coefficient of k . 

Therefore    can have at most one element: namely 
N m

N mc z 

     Hence , 

statements (i) and (iv) are equivalent . Now statement (i) and (ii) are equivalene; 

clearly (ii) and (iii) are exact same statement. Suppose that T   is hyponormal . 

Then there exists  k   and   N m

N mk z c z 

 . Hence , for every 

1, , 1,k m     

  
 

 

2

1 1
0 det

m k m

N m k N m N km n

N N NN k

a a
c a c a

a a aa

  

    



 
    
 
   . 

Conversely, if  

 

 

0det 











 





N

m

kN

km

a

a

a

a

 for all 1, , 1k N   then 

  
 

 

2

1 11

1

1 1
det 0

m k m

N m N m Nm

NN

NN

a a

c a c a
aa

aa

  

    



 
 

    
 
 
  . 

and hence 

       

  
 

 

22

2 2 1 12

2

1 1
det 0

m m

N m N m N N m Nm

N N

NN

a a

c a c a c a
a a

a a

  

       



 
 

     
 
 
  . 

Inductively, we obtain 0kc  for all k=1,…,N-1 . As 0 1 0N mc c     , if Nm 

and 1N mc   , we have  , that the analytic polynomial 
  






1

0

N

j

p zk
is of the form 

  N m

p N mk z c z 

 and therefore  pk  . This completes the proof that 

statements (i) and (ii) are equivalent. 
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Lastly, if T is hyponormal , then 
  N mm

N

a
z

a
 

 
  
   . Because the self 

commentator   TT ,*

 has finite rank , ([18] , theorem 10 ) , there is only one 

element in 
   : N mm

N

a
b z z

a
 

 , which is a finite Blaschke product of degree N-

m .  

Corollary 1.16. Suppose that
 

N
i i n

n

n m

e a e 


 
 , where m N  and 

0m Na a    and let   H    be the subset of all k H   for which 1k

  

and k H    .the following statements are equivalent : 

(i)The Toeplitz operator T  is hyponormal . 

(ii) For all 1,..., 1k N  , 

 

1

det 0
m k m

NN m

a a

aa

  

 

 
 

 
   . 

Proof. Suppose T  is hyponormal from Theorem 1.12. the analytic polynomial (ii) 

holds for all 1,..., 1k N  . For backward implication since 0Na   and 0ma   , 

 

 
 det

m k
m

N m N k m k N m N km k

NN k

a a
a a a a a a a a

aa

 


      



 
     
 
   

0m k N m ka a a a       

Then from proposition 1.11.and the remarks 1.12. and 1.13. T  is hyponormal 

Example 1.17. T  is hyponormal with rank-2self commutator rank 2 2

* , 2T T 
     , 

  2 3 4

2

i i i i ie e e e e         
 

Prove that 2
T  is hyponormal with rank-2self commutator . 

Proof. Let 0 1 1..., 0N mc c c     , 

 

 

:1 1,..., 1,det 0

N

mm n

N n

a a
k N

a a

 



 
   
 
    , 

 
N

i in

n

n m

e a e 


 
 , 

0
m

N

a
c

a


 ,  

 

 11 2
1 2 1

, ...
m Nm m

m m m N

N N N

aa a
c c c

a a a

     
      

  
  

Then  

2

5 5

3 4
0

i i

i i

i i

e e
e e

e e

 
 

 

 

 

 

 
   

   

Then 2
T  is hyponormal .  

Example 1.18. Applied Theorem 1.15 to show that the Toeplitz operator with 

symbol 
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  5 4 2 2 4 52 2 2i i i i i i i ie e e e e e e e                 
 

Whose coefficients satisfy the symmetric relation? 

2 2

3 3

N N

N N

a a

a a
a a

a a

 

 



 

   
   
   
   
   
        

But for which there is no symmetry involving 1a and 1a is hyponormal . 

Proof . 
 

N
i i n

n

n N

e a e 


 
   

5

5

2

2

i N i

N

i i N

N

a e e

a e e

 

  



  
5

1

5 2

2

5 3

3

2

2

2

i i

i i

i i

a e e

a e e

a e e

 

 

 

 



 





  
5 5i N i i i N

N Na e e a e e      

     
5 5 5

1 2 32 3
, ,

i i i

i i i

e e e
a a a

e e e

  

  

  

    
 

5 2 5 2

5 3 5 3

5 5

5 5

2

2
2

2

i i i i

i i i i

i iN i iN

i iN i iN

e e e e

e e e e
e e e e

e e e e

   

   
   

   

 

 

   

   

   
   
   


   
   
   
     

Corollary 1.19. If 
   ni

N

mn

n

i eae 



, then T  is normal if and only if 

NN aaNm  , and  

  

11

2 2

N N

N
N

aa

a a

a a

a a









  
  
  
   
  
  
                    (12) 

Proof. If Nm aaNm  ,
 , and let 

 

 

det 0

m k m

NN k

a a

a a

  



 
 

 
 
 
   for all 

1,..., 1k N   , then by Theorem 1.15. , T  is hyponormal and rank  

  omNTT  ,*

 ; that is T  normal . Conversely , if T  is normal, then by  [ 
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Brown – Halmos [13] ] , there are scalars , C   and areal –value L   such 

that 1T T     . As T  is a hermitian Toeplitz operator , the Fourier 

coefficients of   satisfy    ˆ ˆn n     for all n ; in particular 

   ˆ ˆ
N Na N N a       

 , Showing that NN aa   . Thus , 

N=m and (12) holds . 

Remark 1.20. For trigonometric polynomials   satisfying the assumptions of 

theorem 1.15. the question of whether or not the Toeplitz operator T  is 

hyponormal is completely independent of the values the coefficients 0 , , N ma a 

of  . 

Example 1.21. Consider following two trigonometric polynomials:  

   432

1

iiii eeee  

 

  2 3 4

2

i i i i ie e e e e         
 

Suggests that 2  is less likely than 1  to induce ahyponorrmal Toepllitz operator , 

as 2  is " less analytic " in that ( conanalytic ) term 
ie
 in present is 2  but not 

in 1  However the opposite is true : Theorem 1.15. shows that 2
T is hyponormal 

( with rank -2 selfcommutator ) where as 1
T  is not . 

Theorem 1.22. Suppose that  

 
N

i i n

n

n N

e a e 



 , where 2 , 0NN a   and the coefficients of   satisfy  

  

22

3 3

N N

N
n

aa

a a

a a

a a









  
  
  
   
  
  
            .        (13) 

Then T is hyponoormal if only if  

2

2 2 1 2

1

det
N

N N

N

aa
a a d d

aa





 
    

     ,  (14) 

Where 
  12 2 2

2

1
1

2

N

N N nn
d a a a



 
  

 and d is taken to be o of 2N  . 
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Proof. Assume (14) holds; we are to prove that T  is hyponormal . Solving (4) 

under the condition (13) produces the analytic polynomial   1

0 1

N

p Nk z c c z 

   , 

where 0 N Nc a a  and 

 
1

2

1

1

det

N

N N

N

a a

c a

a a

 




 
 

  
 
   . 

(14) implies that  

2 2 4 22

0 11 N N Nc c d a d a
 

   
   (15) 

The right-hand side of (19) nonnegative and so 0 1c  . 

     Now if 0 1c   , then 1 0Nc    and T  is normal ; assume ,therefore , that 

10 C . Let 
2Hk  be function with Fourier series expansion  

      1 11 0
1

1 1

1

n

n i N ni N
p N

n N

c c
k k e c e

c




 


 

 
     

 


 . 

     As  ˆ
nk n c  for 0, , 1n N  , it remains only to prove that k is in the unit 

boll of 
H . 

Let 

1 0

1

N

N

c c

c
 





 , which is a complex number of modules 0 1c    then 

  

     

 

1
1 11 0

0 1 1

1 1

2 111 0 1
0 02 2

10 0

1

1 1
1 1

n

nnN NN
N N

n N

NNN N

N

c c
k z c c z c Z

c

cc c c
c Z c

cc c




 
 

 

 



 
      

 

 
     

   



 

   

   

12 11 1 0
02

1 10

12 11 11
02 2

0

1
11

02 21

1
1

1 1
1 1

1
11 1

n

n
NN N

n N

n
Nn N NN

n

N
NN

N

c c c
c z

cc

cc
z z c

cc z
c

z

  
 



 




 

 




  








 
      

  
          

  
          





 

Because the function   
1

1w w w 


    is a linear fractional transformation, 

mapping Tonto itself, we obtain the estimate  

1
1 1 1 1

02 2 2 21
1 1 1

11 1 1 1

N
N N N N

N

c c c cz
k c

z



   


   



   
         
           

Which proves that  k  . 
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Conversely, suppose now that T  is hyponormal with respect to the orthonormal 

basis  : 0 ,1,nz n
 of 

2H  , the selfcommutator of T  is a matrix with  v,  - 

entry given by 
 jvjvjj

j

v aaaa 





 
0  , where , 0,1,2,v   

Thus in particular, 

 



N

n

nn aa
1

22

00
  

22

11 NNNN aa    

10 1 1 1N N N a Na a a      . 

 The operator   TT ,*

 is positive and, therefore, so is its 22  principal 

submatrix  

00 0 1

1 1 1

N

N N N

 

 



  

 
 
 
 
   

Hence 00  and 11  NN  are nonnegative and  

00 0 1
2

00 1 1 0 1

1 1 1

0 det

N

N N N

N N N

 

  

 



  

  

 
 

   
 
   

   
22 2 2 2

1 1

1

N

n n N N N N

n

a a a a a a a a    



 
     
 


, 

The symmetry condition (17) Yields  n N N na a a a   for 1,...,2  Nn . 

Direct computation reveals that                         

   2

11

2

11

222

1

2

1   aaaaaaaaaaaa NNNNNN  , 

and so 

                    

00 0 1

1 1 1

0 det

N

N N N

 

 



  

 
 

  
 
   

           
2

2 2 2 2 2 2

1 1N N N Na a a a a a      
 

   
12 2 2 2 2

1 1

2

N

N N N N n n

n

a a a a a a a a


   



    
 

 
  2

11

222
aaaaaa NNNN  

 

 

 
2

1
2 2 2

2

1
N

N
N N n

nN

a
a a a

a








 
   
 
 


. 
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Therefore,      

 

2

2 2 1 2

1

det
N

N N

N

aa
a a d d

aa





 
    

   , 

Where 
 

21
2 2

2

1
1

2

N

N N n

n

d a a a








  
. 

Corollary 1.23. If 
 

N
i i n

n

n N

e a e 


 
 is such that 

                      

11

2 2

N N

N
N

aa

a a

a a

a a









  
  
  
   
  
  
           ,        (16) 

then T  is hyponormal if and only if NN aa   

Theorem 1.24. PC  If and only if it is right continuous and has both a left – 

and right – hand limit at every point. 

There are certain algebraic relations among Toeplitz operators whose symbols 

come from these classes including  2HKTTT    for every  

    H C  T T
 and  L  T

 ,      ( 17) 

And the commutator   TT ,  is compact for every  

                     CP ,  .     (18) 

Now we add to these relations the following one . 

Lemma 1.25. If T is aToeplitz operator with quasicontinuous symbol   , and if 

f is an analytic function on an open set containing   T  , then   TfT fo  is a 

compact operator. 

Proof . Assume that CQ . Recall from [8,] that if  H C   T
 , then T  is 

Fredholm if and only if   is invertible in  H C  T
 . Therefore for every 

  T  , both    and    are invertible in  H C  T
 ; hence , 

  CQ
1

 . Using this fact together with (21) we have for 
L and 

, C   . 

     
 1 1

2T T T T K H         
    
 

 , whenever  T 
. 

The argument above extend to rational functions to yield: if r is any rational 

function with all of its poles outside of   T  , then    2

r or T T K H  
 . 
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Suppose f is an analytic function on an open set containing   T   . By Runge's 

theorem there exists a sequence of rational functions nr  such that the poles of nr  

lie outside of   T   and frn   uniformaly on   T . Thus     TfTrn   in 

the norm- topology of  2HL  . Furthermore because  foorn   uniformaly , 

we have  nr foT T   in the norm – topology . Hence , 

    lim
nfo r nT f T T r T     

 , which is compact . 

Lemma (1.25) dose not extent to piecewise continuous symbols Pc  , as we 

can not guarantee that 
 2HKTT n

n 
   for each 

Zn  . For example , if 

 ie    + -T T
 , where  +T  and  -T are characteristic , functions of , 

receptively , the upper semicircle and the lower semicircle , then 
2T I   is not 

compact . 

Corollary 1.26. If T is Toeplitz operator with quasicontinuous symbol   , then 

for every analytic function f on an open set containing   T , 

(i)       foTTfw   , and  

(ii)  f T  is essentially normal and is unitarily equivalent to a compact 

perturbation of   f of T M 
 , where foM  is the operator of multiplication by 

of  on  2L T
. 

Proof. Because the Weyl spectrum is stable under the compact perturbations , if 

follows from Lemma (1.25) that  

             fofo TTwTfw   , which proves statement (i) . To prove (ii) , 

observe that because CQ  is a closed algebra , the composition of the analytic 

function f with CQ  produces a quasicontinuous function f o QC  . 

Moreover , by (21) , every Toeplitz operator with quaasicontinuous symbol is 

essentially normal the (normal ) Laurent operator f oM   on  2L T
 has its 

spectrum contained with the spectrum of the ( essentially normal ) Toeplitz 

operator ofT . Thus there is the following relationship involving the essentially 

normal operators  Tf and  f oM f T 
 : 

       TfNTf efe   and      fS P f T S p f T M   
 , where 

 TPS  denotes the spectral picture , of an operator T . (The spectral picture 

 TPS is the structure consisting , of the set  Te  , the collection of holes and 
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pseudoholes in  Te  , and the Fredholm indices associated with these holes and 

pseudo holes .) Thus it follows from the Brown –Douglas – Fill more [23] that 

 Tf is compalent to   ff T M 
 , in the sense that there exists a unitary 

operator w  and a compact k such that 

    *

fw f T M w K f T    
. 

Remark 1.27. Corollary (1.26) (i) saying that     \ fof T T  
 consist of 

holes with winding number zero. 

Theorem 1.28. If in aBanach algebra  , i i
A a is asequence of elements commuting 

with a A  and such that ia a  , then    lim ia a   .  

The following Lemma is application of above Theorem . 

Lemma 1.29 If  n n
T is a sequence of operators convering to an operator T and 

such that  ,nT T  is a compact for each n , then    lim e n eT T  . 

Proof . From Theorem (1.28) anf f   denotes the canonical homomorpism of 

 L H onto the Calkin algebra    L H K H , then the assumption give that 

   TTn    and      0, TTn   for each n . Hence  

     TTn  lim  ; that is ,    TT ene  lim  .   

Remark 1.30. Because TTn  by the upper – semi continuity of the spectrum , 

there is apositive integer N such that   VTn   whenever Nn . and V is an 

open set containing  Te  . 

Theorem 1.31. Suppose   HLTT n , , for n Z  , are such that nT  converges to 

T . Suppose f is any analytic function whose domain is an open set V containing 

 T  . If    HKTTn ,  for each n, then 

      TfwTfw n lim     (19) 

Proof . If nT  and T  commute modulo the compact operators then , whenever 
1

nT  

and 
1T  exist , 

1, ,n nT T T 

and 
1T 
 all commute modulo the compact operators 

.Therefore  nTr  and  Tr  also commute modulo  HK  whenever r  is a 

rational function with no poles in  T  and n  is sufficiently large . Using 

Runge's theorem we approximate f  on compact subsets of V  by rational 

functions ir  who poles lie off of V  . So there exists a sequence of rational 

functions ir  whose poles line outside of V  and fri   uniformly on compact 

subsets of V . If Nn  , then by the function calculus , 
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                                       limn n i i n i i i nf T f T f T f T r T r T r T r T  
, 

Which is compact for each n . Furthermore , 

                         
          1 11

,
2

n nf T f T f T T d
i

   


 



    
 

                     
       

1 11
max .max

2
nf T T

i  
  



 

 
    

 , 

 Where   is the boundary of V  and    denote the are length of   . The right 

– hand side of the above inequality converges to 0 , and so    TfTf n   . By 

Lemma (1.29) , 

      TfTfLim ene    . 

The argument used by J.B . Con way and B .B Morel in [5] used here to obtan the 

conclusion      lim nw f T f T
 . 

We now prve the following theorem . 

Theorem 1.32: The restriction of   to the manifold L  of all Toeplitz operators is 

contrnuous at every Toeplitz operator with quasi continuous symbol . Moreover , 

if 
 LCQ n , , and 

0  TT
n  , then       fTTfw

n
lim . 

Proof. suppose 
 LCQ n ,  and 

0  TT
n  . Then by (21) , 

   2, HKTT
n

  . Therefore by theorem (1.2.45)     TwTw
n
lim  , and hence 

    TT
n
lim  . 

Also, because  CQf   and  ff n  , if follows from lemma (1.2.39) 

that  
      lim

n nf fLim w f T T T    
 . 

The argument of theorem 1.32. is limited to quasi continuous symbols , as we 

need is ensure that   TT
n

,   is compact for every n . 

Corollary 1.33.The restriction of   to CPL  is continuous , where CPL  is the set of 

all Toeplitz operators having symbols that are uniform limits of piecewise 

continuous functions. 

With a piecewise continuous function   , we can obtain a  

continuous curve 
#  by joining  0 ie  and   0 2ie    

 by the line 

segment    0 ,i ie e   
   . 

Theorem 1.34. For every    #, ePC T    T
  and   T  consists of  # T

 

together with some of its holes . 
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Remark 1.35. observes that the results which developing Toeplitz operators with 

piecewise continuous symbols in fact hold , more generally , for symbols 

 L  T
 having the property that  

  
   

0

,V cl
     



    
     (20) 

Is contained in same line segment 
L  for each     in this case , 

   e T convV
 



 




     (21) 

Definition 1.36. The function   which satisfying (20) call Douglas function ; let 

 D T
 denote the set of all Douglas functions in  L T

 .  

Definition 1.37. Let  :G L C H  
 denote the Gelfand transform , where 

H   is the S i l v   boundary of   ˆ. .,H i e H T
 is the maximal ideal space 

of L  . If 
L , then by the Gelfand theory ,  ˆ H 

  is the spectrum of   , 

as an element of 
L  , namely ,  ˆ H 

 is the closure of the essential range ess-

ran   of   . Now given  L  T
 , let  


V be as in (20) . If   has the 

property that   conv 
   ˆV H


   

 , or that   conv  


V  is contained in 

some line segment 
L  for each   T  , then   will be called pseudo – 

piecewise continuous . Write PPC for the set of all pseudo – piecewise 

continuous functions in 
L . 

     For every  T  and  D T
 , conv    

  VconvV   , and so 

 D PPCT
 .If  PPC  , then (21) ( together with the fact that T  is not a 

Fredholm operator whenever   cannot be inverted in  L T
 gives 

   



 



TVconv e

T





.           (22) 

The following example shows that the inclusion  D PPCT
 is proper . 

Example 1.38. There exists  L  T
 such that  \PPc D T

 . 

Proof. Set 
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 
2

2

1 1
1 sin

2

3 2
2

6 8

2
0

3

1 1 2 2
2

3

1 2
2 2 2

2

i

i
i

e

e i e

i sin





 

 




  
   

    
  

 
 

 

 
  

  

  
  

 
   

        
   
  

          

 At 0  , the graphs of   T
 and  V can by shown . Therefore  Vconv  

is contained in no line segment and hence  D T
 But evidently 

 


VConv for each   . In fact , 

    ˆ :V H








    



 
T  

Therefore CPP  . 

Theorem 1.39.If  L  T
 and c is a rectifiable simple closed curve lying in 

 eC T
 then  Conv T

lies either entirely inside entirely outside of c  . 

Definition 1.40. The map  :L H k  sends every operator  T L H to the 

topological boundary   T
 of its spectrum   T

. 

Theorem 1.41. The restriction of  to the set of all Tpoelitz operator with 

pseudo-piecewise continuous symbol is lower-semicontinuous at each Toeplitz 

operator with Douglas symbol ; that is , if  ,n P P c D   T
 and 

0
n

T T  
 

then    liminf
n

T T    
 . 

Proof . observe that 
    liminf liminf

n n
T T   

. Since  inf
n

Lim T
. 

 T
 and hence 

    int liminf int
n

T T  
 , it suffices to show that 

   liminf
n

T T   
. Assume  liminf

n
T 

 . Then there exists a 

neighborhood  1N  of  such that doesnot intersect in finitely many  
n

T
 . 

Thus we choose a subsequence  
in of  n such that ni

T 
is in veritable for 

each  1N  , which says that    1 0
in N   T

for each in . Since 

0
nn T T  


   

, there exists a neighborhood  2N   , which says that 

   2 0N   T
 and    2 1N N  . There are two cases to consider. 
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Case (i) : suppose   T
 winds around  2N  . By Theorem 1.34. , but since by 

(25) ,    2N C T  
, it follows that either    2 0N T   

 .  Therefore 

 T 
 

Case (ii) : Suppose   T
 does not wind around  2N  . We now claim that 

 Conv V








 



T   

On the contrary , we assume that  


VConv  for some  T  . Since 

   2 0N   T
 , and   ,D  T

 must lie in some line segment  L  such 

that     0L

   T

 . Since 
0

in  , we have  

   
i onV V

  
 and hence      o

VconVConv n 
1 . 

But since  o
Vcon  is contained in a line segment and , by (26) , 

   
i ni

n econvV T
   

 , it follows that for each neighborhood  N  , there 

exists   Na   such that ni

T 
 is not Fredholm , which gives a contradictio. 

Therefore
 Conv V









 



T  . Thus by (26),  T  is Fredholm . Now because 

for every  HLT   ,    TT e \  consists of isolated points of  T  . We 

conclude   T  is connected. This complete the proof. 

We now have the extension of corollary 1.26 with the following result.  

Theorem 1.42.The restriction of   to the set of all Toeplitz operators with pseudo 

piecewise continuous symbols is continuous at each Toeplitz operator with 

Douglas symbl. 

Proof . Suppose  ,n P PC D   T
 and 

0  TT
n  . By theorem (1.41) 

    liminf
n

T T  



, 

Where k̂  denotes the polynomial - convex hull of k consequently, the passage 

from  
n

Tinflim  to   T  is the filling of some holes of  
n

Tinflim . 

Thus if   T  has no holes , then clearly    lim inf
n

T T  
 . If   T  has a 

hole   , then   can be regarded as a " local closed curve " see [9] determined 

by conv  V  . As 
   conv V convV

 
 

 


  
TT  ,  

we have 
 

S

convV







 

 for some subset S of T . 
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Because also 
   

inconvV Conv V
 

 

 

 

 
 

  
T T  , we conclude that for 

sufficiently large in , in be haves like a Douglas function locally on S . Thus the 

index theory for continuous symbols can be applied for this local closed curve 

[9]. 

     But 


n  and so for sufficiently large n ,  

       
nnind T wn wn ind T              

 for each   . Hence 

   
n

TT   inflim
 has no hole with non – zero winding number , and 

consequently  

      
n

TLimT   inf . 

Now we show Welyl's theorem for analytic functions of toeplitz operator: 

Theorem 1.43. weyl's theorem holds for T  if  

     TTTw 00\  , 

Where  Too  is the set of isolated points of  T  that are eigenvalues of finite 

multiplicity. 

Theorem 1.44. The set of operators for which Weyl's theorem holds includes all 

semiformal operators and all Toeplitz operators . 

Lemma 1.45. suppose that   is continuous and f  is an analytic function defined 

on some open set containing   T  . Then 

      TFT f  ,     (23) 

and equality occurs if and only if weyl’s theorem holds for  Tf . 

Proof . By corollary (1.2.40) ,  

          fT w f T f T f T       
 . Because  T  is connected , 

so is        TfTf   ; therefore the set    Tf00  is empty . Again by 

corollary (1.2.40) ,       fTTfw   and so 

          TfTfTfw 00\  If and only if       TfT f  . 

Remark 1.46. If   is not continuous , it is possible for weyl’e theorem to hold for 

some  Tf  without   fT  being equal to    Tf  . On example is as 

follows . 

Let    3 0 2i ie e     
 , a piecewise continuous function. The operator 

T  is invertible but  is not ; hence 
    2

\0 2 
 TT

. However 

   22

  TTw   , and  2

00  T  is empty ; Therefore weyl’s theorem holds for 
2

T . 
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Question 1.47. If T is aToeplitz operators , then does weyl’s theorem hold for 
2

T

?  

Answer: is no . 

Note: The answer of 1.47. begin with a spectral property of Toeplitz operators 

with continuous symbols . 

Example 1.48.There exists acontinuous function  C T
 such that 

    2

2

T T
 

. 

Proof . Let   be defined by 

 
 
 

2

2

0 01

0 21

i

i

i

e
e

e









 

  


   

The orientation of the graph of   can be shown clearly   is continuous and ,   

has winding number +1 with respect to the hole of 1c ; the hole of 2c has winding 

number -1 . Thus we have  

   e T  T
 and    T conv  T

 

On the other hand , straightforward calculation shows that  2 T
is the cardioid 

 2 1 cosr   . In particular ,  2 T
 traverses the cardioid once in 

acounterclockwise direction and then traverses the cardioid once in aclock wise 

direction . 

    Thus  2 0nw   
for each  in the hole of  2 T

 . Hence 2T
   is aweyl 

operator and is therefore , invertible for each   in the hole of  2 T
. This 

implies that  2T



 is the cardioid  2 1 cosr    .But because 

          
2 2

, : 2 1 cosT conv r r      T
, if follows  

    2

2

T T
 

  
Remark 1.49. It is instructive to observe that lemma 1.45. gives a necessary 

condition for T   to be hyponormal . we recall [17] hat if  HLT  is hyponormal 

, then weyl’s theorem holds for every  Tf  . In conjunction with lemma 1.45. , 

this is to say that if T  is hyponormal , then       TfT f  . But this 

necessary condition is not sufficient , for a slight extension of theorem [1] , [17] 

which show that weyl’s theorem holds for  Tf  , where T  is the 

cohyponormal Toeplitz operator with symbol    ii ee   ; hence  

      TfT f   . 
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We conclude by studying continuous symbols   that have the property that 

weyl’s theorem holds for  Tf  , for every analytic function f  on a 

neighourhood of   T  . 

Theorem 1.50. If   C T
 is such that   T  has planar Lebesgue measure 

zero, then       TfT f   for every analytic function f  defined on an open 

set containing   T  . 

Proof. As   is continuous , so is f  and thus    e T  T
 and 

      e e ff T T f     T
 . The planar measure of   T  is zero ; 

because   T  is a compact connected set consisting of   T
 and some of its 

holes , it follows that        TTT e   , which is just a continuous curve . 

Furthermore, as analytic functions map open connected sets on to open connected 

open sets , we have that           TfTfTf e   . Thus  

      fTTf   , which together with (23) gives the result. 

Remark 1.51.We note here that Toeplitz operators whose symbol satisfies the 

hypothesis of theorem 1.50 are essentially normal of type “ normal + compact “ . 

To see this let D  be a diagonal operator whose spectrum is   T
 . Because T  

and D  are both essentially normal and    DPSTPS   , it follows from the 

Brown – Douglas – Fillmore theorem that T  and D  are complent ; that is , 

KNT   for some normal operator N  on 
2H  and some  2HKK  . this 

observation is of interest because if   T  has planar Lebesgue measure zero and 

, further , if T  is hyponormal , then by putnam’s inequality T  is normal and 

  T
 must be a line segment . 

Theorem 1.52. If the winding number of  C T
 with respect to each hole of 

  T
 is nonnegative ( or is nonpositive ) , then       TfT f    for every 

analytic function defined on an open set containing   T  . 

Proof . suppose that the holes of   T
 have only nonnegative winding numbers . 

Since   is continuous , it follows that    TTe     and  

         TfTfT eefe      (24) 

If   T
 has no holes or has holes of winding number zero only , then 

   eT T  
 ; thus 
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              ffeee TTTfTfTf  , 

Which together with (23) gives       TfT f   . 

Now assume that there exists at least a hole   of   T
 such that   0nw  

for all   .Namely,   0 wnw  , for all  .In view of (24) , it 

sufficient to show that  

            fefe TTTfTf \\   . Thus the proof is completed by 

showing that if   , then     fTf   . Suppose that   ; thus  T  is 

Fredholm with     0ind T wn w       
 . Write 

          1

1 ...
n

nf z f z z z F z
 

        , 

where   , 1i iZ T i n     
 and  zF  is analytic and has no zeros in 

  T  . We have  

      1

1 ...
n

nf f F
 

              . 

From (24) ,  f f
T    is Fredholm and hence   ff   is invertible on .  So 

each  ni 11  and F  vanish nowhere on T . Therefore 1T  and FT  

are all Fredholm . By assumption ,   0 inw   , and because F  has no 

zeros in   T ,   0Fnw   . Thus 

          
   

1

1

1

...

0

n

nF f

n

i i

i

ind T wn F

wn wn

 

 
      

    





   

    
  , 

Which shows that   ffT   is not Awelye operator and hence is not invertible. 

We conclude that     fTf   . The proof of case of non positive winding 

numbers is similar  

Example (1.2.67) [4] : If   is of the form 








bz

z

a
P

 ,where Rba ,  and P  is 

any polynomial , then 

      TfT f   . 

Proof. if ba  , then T  is hermitian and the desired conclusion is clear . If ba  , 

set 
zb

z

a


. Then 

   
2 2

, : 1
u v

u v C
b a b a


     

        
      

T
, 
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Which is a circle or an ellipse . Thus        p o p   T T T
 , which has 

no holes has exactly one hole ( because polynomials map continuous curves onto 

conclusion curves and open sets onto open sets ) . The conclusion nows follows 

from Theorem 1.52. . 

Remark 1.53. Lemma 1.45.  and theorem 1.50, 1.52 hold for quasicontinuous 

symbol   . In this case , if T is Fredholm , then the index of T  is the negative of 

the winding number with respect to the origin of the curve   ierˆ  for 

11  r  , and  

    
0 1

ˆ :1 1i

e T cl r e r





  
 

   
 , 

Where ̂  is the harmonic extension of   to the open unit disk D [8]. 

Remark 1.55.The index of a hyponormal operator is always nonpositive and 

therefore, in general , the holes of the essential spectrum of a hyponormal 

operator cannot have negative winding numbers . This fact may lead one to 

believe that if   T
 has no hole with negative winding number ( in particular , in 

case that   is atrigonometric polynomial . Then T  is hyponormal . But such is 

not the case . For example , if 

  2 2

1

i i i ie e e e      
 , and   2 2

2

i i i i ie e e e e         
, then  1 T

 has just 

one essential hole whose winding number is +1 , and  2 T
 has no hole . as 

shown in figure (4) . But the theorem (1.41) , 1
T and 2

T both fail to be 

hyponormal . 

Remark 1.56. Recall [23] that an operator  HLT   is quasitriangular if there 

exists an increasing sequence  nP  of projections of finite rank in  HL  that 

converges strongly to the identity and satisfies 
0 nnn PTPTP

 . By work of 

A postal , Foias, and Voiculescu , it is known that T is quasitriangular if and only 

if  S P T  contains no hole or pseudohole with negative winding number . 

Rewrite theorem 1.52. as follows . If T  is quasitriangular ( or 
*

T  is a 

quasitriangular ) Toeplitz operator with continuous symbol   , then 

      TfT f   . In Remark 1.54. we showed that even if 
*

T  is a 

quasitriangular operator ( with trigonometric polynomial symbol   ) , T  may 

fail to be hyponormal . In spite of this , it would be interesting to have amethod 

by which one could determine the winding number of curves given by 

trigonometric polynomials with respect to the various holes these polynomial 

produce . We expect the solution will make extensive use of Theorem 1.52. 
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Spectrum of Toeplitz operators with Harmonic polynomial symbols on Bergman 

space 

In the following Theorem we investigate the structure of the spectrum of the 

Toeplitz operator         via certain analytic properties:  

Theorem  2.1( Pearcy ): Let   be a bounded linear operator on a Hilbert space   

and H be " a hole in   (   )  " ( which is a bounded component of     (     )  ) 

such that 

                    Index (     )          ,  

Then either  

                  ( a )     (   )       ,  

                  (b)      (   )  ⊂      , or 

                  ( c )     (   )    is a countable set of isolated eigenvalues of  , each 

having finite multiplicity. Furthermore, the intersection of  (   )   with the 

unbounded component of      (     )  is a countable set of  isolated eigenvalues 

of   , each of which has finite multiplicity. The following theorem gives a 

characterization for the eigenvalues of a class of Toeplitz operators with 

harmonic symbols on the Bergman space, which is useful for us to study the 

isolated points in   the spectra of Toeplitz operators with some bounded harmonic 

symbols. The following theorem gives a characterization for the eigenvalues of a 

class of Toeplitz operators with harmonic symbols on the Bergman space, which 

is useful for us to study the isolated points in the spectra of Toeplitz operators 

with some bounded harmonic symbols. 

Theorem 2.2. Let   be a function in      ( ) .Suppose that   is a complex 

number not in the essential spectrum of the Toeplitz operator      . Then   is an 

eigenvalue of        if and only if either    , ( )    - dose not vanish on the 

unit disk or    , ( )    -  has finitely many simple zeros *       + in the 

unit disk Which satisfy 

                                                                 
    (  )   

    

    
                     

*       +                 

                                  The above theorem leads to the following complete 

characterization on the invertibility of the Toeplitz operator       with      

  ( )Immediately.                         

Theorem 2.3. Let   be a function in      ( ).Then the Toeplitz operator       

is invertible on the Bergman space   
  if and only if the following two conditions 

hold: 

                                    (i)      has no zeros on the unit circle    ; 

                                    (ii)      has exactly one simple zero    in the open disk 

  which satisfies that 

                                                                                  
    (  )    

   

   
                              

                                   For any nonnegative integer  . 
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Now we show that the spectrum of Toeplitz operator         is connected for 

every quadratic polynomial    . 

Theorem 3.3. Let  ( )     ( )  , where   a quadratic polynomial is. The 

spectrum of the is Toeplitz operator     given by 

                                      

 (   )     (  )  *       (  )         ( (  )  )   + ,   

                  Which coincides with the spectrum of the corresponding Hardy- 

Toeplitz operator with symbol        (   ) . Hence the spectrum  

                  Of       is connected for every  ( )           with            

. 

Corollary 3.4. Let  ( )    (          )  where  ,   and   are all complex 

constants. Then the Toeplitz operator     is invertible if and only if  

                 The cubic polynomial              has a unique zero in the 

unit disk   with multiplicity 1, but does not have any 

                  Zero on the unit circle ∂ . 

 

Corollary 3.5.   ( )    (          )               .Then we have   

                                            (   )  ⊂     , ( )-             

   CONCLUSION 

This paper establishes conditions under which the Toeplitz operators     is 

hyponormal with   is trigonormaltic polynomial  

   ni
N

Nn

n

i eae 



  , where 0Na  

If 
  




N

Nn

in

n

i eae 
 , where 0Na , and if 0 1 1, ,... Nc c c C   are obtained from 

the coefficients of   by solving the recurrence relation   
0

N

N

a
c

a


 

 
1

1

0

n

n N N n j N n j

j

c a a C a




   



 
 

 


 , for n=1, … , N-1  

 Then, 

1

0

1
N

j

j

c





 

    .And with   is trigonormaltic polynomial   

 

   ni
N

mn

n

i eae 



, then T  is normal if and only if NN aaNm  , and  
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11

2 2

N N

N
N

aa

a a

a a

a a









  
  
  
   
  
  
                     

.And investigate the structure of the spectral picture of the Toeplitz operators 

       with harmonic symbols on  Bergman space .And we have result that If 

 ( )    (          )  where  ,   and   are all complex constants. Then 

the Toeplitz operator     is invertible if and only if the cubic polynomial     

         has a unique zero in the unit disk   with multiplicity 1, but does 

not have any Zero on the unit circle ∂ . 
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