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ABSTRACT. In this article, the necessary and sufficient conditions for the
hyponormality of Toeplitz operator T, with a trigonometric polynomial symbols
@ on Hardy space are explored. And we use algebraic spectral properties of
Toeplitz operator on Hardy space to characterize normal and hyponormal
Toeplitz operators with polynomial symbol.Also we shows some new
phenomenon in the spectral theory of Toeplitz operator on the Bergman space.

INTRODUCTION

An elegant and useful theorem of C. Cowen [7] characterises the hyponormality
of a Toeplitz operator T, on the Hardy space H"2 (T) of the unit circle T c C by
properties of the symbol ¢ € L*(T) This result makes it possible to answer an
algebraic question coming from operator theory { namely, is T, hyponormal?
- by studying the function ¢ itself. In a recent paper [18] of T. Nakazi and K.

Takahashi, Cowen’s method is carried out to obtain substantial new information
about hyponormal Toeplitz operators and their symbols. In the present paper we
study the hyponormality of T ¢ in the cases where ¢ is a trigonometric
polynomial ¢(e?®) =3V, a,e?; the goal here is to find conditions on the
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coefficients a_nthat are necessary and sufficient for T, to be hyponormal. This
problem is still rather complicated in general; however, in this study we, are able
to offer necessary and sufficient conditions for the normality and hyponormality
of T, in the cases where the Fourier coefficients of ¢ satisfy certain extremal and
symmetry properties.

In 1909 H. Weyl examined the spectra of all compact perturbations A+K of a
single hermitian operator A and discovered that A € a(A + K)for every compact
operator K if and only if Ais not an isolated eigenvalue of finite multiplicity in
o(A). Today this result is known as Weyl’s theorem, and it has been extended.
from hermitian operators A to hyponormal operators and to Toeplitz operators by
L. Coburn [4], and to seminormal operators by S. Berberian [1].

In this paper we determine properties of continuous functions ’ that imply that
Weyl’s theorem holds for all analytic functions of the Toeplitz operatorT,,.

This analysis entails an interesting new fact, which seems to be absent from the
literature, concerning the continuity of the spectrum:

In this study we, show that, when restricted to the linear manifold of all Toeplitz
operators, the spectrum is a continuous (set-valued) function at every Toeplitz
operator T, with quasicontinuous symbole. In fact, somewhat more general
results are true.

Let ¢ is trigonometric polynomial (e?®) = ¥V, a,e® , to find conditions on the
coefficients a, that are necessary and sufficient for T, to be hyponormal.

Let L(H) and K(H )actually restates denote the algebra of bounded linear
operators and the ideal of compact operators on a complex Hilbert space H , and

let 7 denote the canonical mapL(H)—>L(H)/K(H)  fTeL(H) is a

Fredholm operator that is, 7(T) s invertible in L(H)/K(H)  then ker
and ker T are finiteT . Dimensional and the index of T is the integer

ind T =dim kerT —dim kerT"

The subset of 0 (T) that is stable under compact perturbations is denoted by

W (T ) and is called the weyl spectrum of T.
The fredholm operators that have index zero are called weyl operators. The

essential spectrum © (T) and the weyl spectrum W (T ) are defined as follows:

o, (T)={2e g T-21

is not aFredholm operator } .

W(T )={4e £:T-21 js ot aWeyl operator } .

Clear 9 (T)=wW(T )< o(T) | aithough unlike @ and o the weyl spectrum of
T need not satisfy the spectral mapping theorem .

2
The Hilbert space L(T)has canonical orthonormal basis given by the

trigonometric functions e,(z)=2" ,forall N€Z,
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The Hardy space H 2( T)

An element f is referred to as analytic if f€H” and Co-analytic if feLl"©H”,

If P denotes the projection operator L = H*  then for every €L (T) the

T

operator "o on H? defined by

T, 9=P(29) forall 9. H? Is called the Toeplitz operators with symbol .
An operator T is saild to be hyponnormal if its selfcommultator

(T* T=TT-TT is positive ( semidefinte ) .
Theorem [1.C.C.Cowen] which characterize the hyponormality of Toeplitz

operator requires one two solve acertain functional equation in the unit ball of
H™ . The spectral variation with in the Manifold M of Toeplitz operators: Let K
be set with the Hausdorff metric of all compact subsets of € .The spectrum is a
function 01'—( H )—>k mapping each operator T to its spectrum G(T).

The function o is upper — semicontinuous and o dose have points of

T

discontinuity. Let ¥€L" the operator '¢is point of continuity for the spectral

function o:L—Kk | where L is a subset of '—(HZ) consisting of all Toeplitz
operators.

The subspace H°°(T)+C(T) is a closed subalgebra of L”. And the elements of

the closed selfadjoint subalgebra QC | which is defined to be
ch(Hw(Tp{xT)y{Hw(m+c(T»

are called quasicotinuous functions .

The subspace PC is the closure in Lm(T)
function on (T)

Next, we chactrarize Toeplitz operator T, with the symbol ¢ on the Bergman
spaces defined by T, f = p(¢ f) for f in Bergman space.

And as a fundanmental problem concerning Toeplitz operators is to bdetemine
the spectra interms of the properties of their symols.

It is natural to study the spectra of Toeplitz operators with bounded harmonic
symbols on the Bergman space.

Let dA denote the Lebesgue measure on the open unit disk D in the complex
plane C, normalized so that the measure of the disk D is 1.

The complex space L2(D ; A) is a Hilbert space with inner product:

f.9)=J, f@g(z)dA(z).
The Bergman space L? is the set of those functions L?(D ; A) in that are analytic
D on. The Toeplitz operator T, with the symbol ¢ on the Bergman space is

of the set all piecewise continuous
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defined by T, f = p(¢ f) for f in the Bergman space L%, p is an Orthogonal
projection from L2(D ; A) onto L% ,and ¢ € L®(D ;dA).

Notations: The Toeplitz operator o (T,),0,( T, )and o.( T, ) denote the
spectrum and essential spectrum of The Toeplitz operator T, , respectively.

Let N denote the set of nonnegative integers. There is little characterization for
the Topological structure of the spectrum of the Toeplitz operator with

A bounded harmonic symbol, even if the symbol is the Harmonic function z + p
for an analytic polynomial p.

Keywords:  Toeplitz operator, Hyponormal, Hardy space, Bergman
space,Harmonic polynomial, spectra , spectrum.

METHODOLOGY

In this study, we use algebraic spectral properties of Toeplitz operator on Hardy
space to characterize normal and hyponormal Toeplitz operators with polynomial
symbol that is Let ® is a trigonometric polynomial of the from

N
¢(elﬁ): Zan e|n0 T
— , where &n and @ are nonzero ,then ,

(D(elﬁ): Z an e|nz9
n=—N
Co:CrCu1€ L2 are obtained from the coefficients of @ by solving the

(p(eie)z ZN:an gine
n=—N

¢ is hyponormal

when m<N and |a_m|s|aN|. Let ~where & #0 and if

recurrence relation: For ¢ be the trigonometric polynomial

where ay #0 ,and let kKeH™ satisfies —k@eH™ | then k necessarily satisfies
N —ino -ne
kYa, e ->a,-e eH”
n=1 n-"
The computation of Fourier coefficients k(0)....k(N-1) of k is: k(n)=c,, for
n=0,1, ...,N-1,

Where Co:Cii+»Cnvaare determined uniquely from the coefficients of ¢ by the

j=0 ) ] , for n=1, ... , N-1 then the Toeplitz operator To is
hyponormal when

N-1
Z‘Cj‘ﬁl
j=0
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Also use spectral theory of Toeplitz operators with Harmonic polynomial symbol
on the Bergman space to show some new phenomenon.

Let p be a functionin H* N C (Q).Then the Toeplitz operator T, is invertible

on the Bergman space L? if and only if the following two conditions hold:
(i) 1 + zp has no zeros on the unit circle D ;
(if) 1 + zp has exactly one simple zero z, in the open disk

D which satisfies that

‘ n+2
25 p(z0) — —5 #0

For any nonnegative integer n.
Now we show that the spectrum of Toeplitz operator T,,, is connected for

every quadratic polynomial p .

LITERATURE REVIEW

Here a few essential fact concerning Toeplitz operator with continuous symbols
need to begin with, using [8] R,G.Douglas The Hilbert space L*(T) has a
canonical orthonormal basis given by the trigonometric function e,(z) =
z" foralln € Z , and the Hilbert space H2(T) is the closed linear span of
{e,;n=0,1,..}.
An element f € L? is referred to analytic if f € H? and coanalytic if f €
L? © H? .If p denoted the projection operator L? — H? , then for every
@ € L(T) , the operator T,, on H* defined by

T, g =p(pg) forallg € H>  (6)
Is called the Toeplitz operator with symbol ¢ . Every Toeplitz operator has
connected spectrum and essential spectrum, and by [4] L.A.Coburn,

o (Tw) =w (T<p)

The set C (T) of all continuous complex-valued functions on the unit circle T
and H®(T) = L*N H? are Banach algebras, and it is well - known that every
Toeplitz operator with symbol T, € H® is subnormal .The C* — algebraV
generated by all Toeplitz operates T, with ¢ € C (T) has an important property
Which is very useful for spectral theory: the commutator ideal of V is the ideal
K(H?) of compact
Operators on H2 . As C (T) and V / K(H?) are * —isomorphic C* — algebra ,
then for every ¢ € C (T) ,
(i) T, isaFredholm operator if and only if ¢ is invertible ;
(ii) indT, = —wn (¢),
(iit) 0.(T,) = ¢ (D),
Where wn (@) denotes the winding number of ¢ with respect to the origin.
Finally, we make note that if we make note that Iif
We make note that if ¢ € C (T) and if f is an analytic function defined on an
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open  set  containing  o.(T,),thenf o ¢ € C(T)and f(T,)
Is well-defined by the analytic functional calculus.

It is known that the Weyl spectra of every hermitian operator and every normal
operator  consist  precisely of all points in  the  spectra
except the isolated eigenvalues of finite geometric multiplicity. “Weyl’s theorem
for an operator” was first introduced by Coburn [34] in 1966, which says that the
complement in the spectrum of the Weyl spectrum coincides with the isolated
points of the spectrum  which are eigenvalues of finite
geometric multiplicity. Moreover, Coburn showed that Weyl’s theorem holds for
all hyponormal operators and Hardy-Toeplitz operators [34]. Weyl type theorems
with respect to isolated points of the spectrum of an operator were investigated
for many cases and many classes of operators. Based on the characterizations for
the spectra of Toeplitz operators in Theorems 2.4 and 4.1, we show in Theorem
5.2 that the Bergman-Toeplitz operator T,,, satisfies Weyl’s theorem, where q is

an arbitrary function in the disk algebrain H* n ¢ (D).

Aim: This paper aims to investigate the conditions under which Toeplitz operator
with symbols exhibit hyponormality on Hardy space by using algebraic spectra
Properties of it and also Investigate the structure of the spectrum of the Toeplitz
operator on Bergman space.

1. Necessary and sufficient conditions for Hyponormality with triagonometric
polynomial symbols on Hardy space

Theorem 1.1. If f is an analytic function on an open set containing U(T) , then

w(f(T))cf(w(T) 1)
But if T hyponormal , then
w(f(T)=1 (w(T)) ®)

Remark 1.2. Every Toeplitz operator has connected spectrum and essential
spectrum, and

o(T,)=w(T,) @3)

Remark 1.3. The sets C(T) of all continuous complex-valued functions on the

unit circle Tand H ( T ) =L nH? are Banach algebras.

Theorem 1.4. Every Toeplitz operator with symbol ?€H ™ is subnormal.
Theorem 1.5. The commutator ideal of the C* - algebra V is the ideal K(H 2) of
compact operators on H?* .

Theorem 1.6. Let C(T) and V/K(Hz) are * - isomorphic C” - algebras, then

for every ¥ € c(T) ,

Ty is Fredhdm operator if and only ¢ is invertible 4
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, ()

o.(T,)=¢(T) (6)

Where W”((P)denotes the winding number of ¢ with respect to the origin.
If < C( T) and if f is an analytic function defined on an open set containing

o(T,) them T02<C(T) and f(T,) is well defined by the analytic functional
calculus.

(D(Eia): ian pine
n=—N

Remark 1.7. Let ¢ be the trigonometric polynomial , Where

ay #0 and let keH "™ satisfies ®—k@<€H™ | then k necessarily satisfies

N —-iné

kZN“an e ->a,-e eH”
n=1 n-"

(i) The computation of Fourier coefficients k(0).....k(N-1) of k is: k(n)=c,,
for n=0,1, ...,N-1,

(7)

~

Where GG+ »Cnvaare determined uniquely from the coefficients of ¢ by the

recurrence relation ay
j Jforn=1, ... ,N-1 (8)

n-1
Cn( aN) l[a—Nm _zcjaN—m—j
-0
(ii) Therefore if KKz < E(9) then ¢ =k (n)=k,(n) for all N=0.1,...N -1
N-1
k,(z)=> ¢,z
and j=0

satisfying #—k@ e H™

, the unique ( analytic ) polynomial of degree less than N

. . . p i
(iii) Conversely, if K is the polynomial i=0 , where Co:C1Cna are

determined from the recurrence relation (8) , then for every integer " >0 | the

Fourier coefficients ?~K?( =) of p— k& satisfy

N-n N-n-1
p—ko =a, _ch Aoy :[ a,— Z C an+j]_CN—n ay=0
i—0

j=0

— 2 _
Which implies that ¢-k@ €H" Byt since 27K isa polynomial, it follows
that # K, #eH”
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Remark 1.8. However the relation (8) can always be solved uniquely to produce
an analytic polynomial Ky satisfying p—k,peH” , the polynomial Ko need not

be contained in the set € (#) | even if € (#) is known to be nonempty .
Example 1.9. Consider the trigonometric polynomial

(o(eie):e—ize+2e—i6+ei9+2ei26 .

1 3
ﬂ=—+zz

Solving the recurrence relation (8) produces the polynomial p( 2

| kl=g>t e
which has norm 4 making “r ineligible for membership in (o) :
On the other hand, a straight forward calculation show that the linear fractional

1
7+
b(z)=—:2

i 1+ . — g o
transformation 2" satisfies #—b® €H™ | as b maps the unit circle

onto itself , b has norm [bl. =1 Thus P€€(#) and so To is hyponormal. And
Fourier series of b , namely

o(e)- 3+ 5o 5[ 5) ¢rr= ke enle)

j=2 H

Converges uniformly on (T) to b and b is finite Blaschke product.

N
_ . a
[ 4 _ =N
(D(el ): Z ae",ay #0,C),C,.sCyy  Co=—
Proof. n=-N = A
1 n-1
Co=(ay) | @nin 2 Ci8yne; [ \N=1...N-1
i=n
Nl
— ] —
k, (2)=¢,2' =Cy,C..C 4
=0 ,
-2i0 20 —-i20
. . e : : 2e e
—iNg __ -iz0 _ iNO _ Li20 _ F —
a,e ' =e""=a, = e =e" —a NTTgiNe N T Tine

a e—i20 1 e—i No& 1
N

= - X — - = —

EN e—l Né 2 e—l29 2

i(-N+1)0 2e™"
I(=N+ -ig
a_y,e =2 " =a  , = oNg
i(-N+1)0 e’
(=N + i0
A n-a® A e

C,=——
1 2 e—lN@

l ei20 2e—i9 _1 e—i0 _§Z
: (o)

i(-N+1)0 E pi(-N+1)e
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1 3
k =C,+Cz==+—12 — g
P TaEES Y satisfying = %2<H”  \where
(D(Eie):e—ize+2e—i9+ei0+2ei29

Theorem 1.10. suppose that ¢ is a trigonometric polynomial of the from
¢(elﬁ): Z an eln&

m<N and |&n|<]ay],

_where 2n and @ are nonzero . If To is hyponormal , then

Proof . Suppose T, is hyponormal, then ¢ is trigonometric polynomial under

¢(ei0) _ i aneinH

certain assumption about the conefficients o where | & |¢0, let k

salisfies = Ko?€H” then necessarily salisfies (7) , then from (8) —M<N

iNo

M0, +a e’

—m

N
i0)_ ing _ -im@ —i(m+1)60
p(€’)=> ae"=a, e™+a, e +a e
n=-m

Since @mand @ are nonzero, let C:":Cna be the solution of (8) because
|a[#0 e have |Cv-nl=l2nl/Iau] then there is a function X€€(#)such that

K(N=m)=Cy_nthys 12K, 2[¢rnl=[a.nl/[a] which implies that | &nl<[ax],

qo(ele)z an ema
Proposition 1.11. If n:Z—N where @ #0 and if GG Cy1€ L
are obtained from the coefficients of ¢ by solving the recurrence relation (8) then

the Toeplitz operator Tois hyponormal when
N-1
PALAES!
j=0 9
n-1
Co & .c, =(ay )_l(aN+n - .Cay ””J n=1..,N-1
Proof. ay =0

k| <1

=0 satisfies ? ~K:?<€H” from that ‘ . then

N-1
| kaws;\ ‘| L then & (2)e¢(0)

and so from the Cowen's Theorem To is

hyponormal .
N
(0 ei@ — a einH )
Remark 1.12. If ( ) " where EAEN forall 1=2,-sN =1 then
N-1 i N-1
c|<|c|+]a 2" D,

from the recurrence relation (12) we have JZ—;“ J‘ | O| | N| ; | |
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a, a,
a

Dn:det( J
n &) Therefore if

Where

N-1
2D |+|a, a,|<l|a,|
> 20 [ana<laf w0

T

Then by proposition 1.11. , "¢ is hyponormal . Because the left — hand side of

— 2
(10) depend on @~ and @v and the right — hand side depends on lan"

follows that To is hyponormal whenever |aN| is sufficiently large . In particular ,

the Toeplitz operator with symbol p+1e™ s hyponoarmal whenever relis
such that

N-1 L
12123 2" |a, | +|a, | )+|a_N|+‘aN‘
n=1

(/)(e”): ZN: aeh

Proof. Let S and sl i= 20 N =L gl (8)
N-2

Bl o, 52

|aN| n=1

|Dn| :(a—naN _a—Nan)

a
Co =t
dy

(1)

C, =( ay )7l(afN+2 _ClaN—2+1) (3) —C = (aN )71(a—N+2 -G aN—2+l)

-1

C3=( gN)il(ame_CzaNferz) (4) _)C3=(§N) (a—N+3_C2aN—3+2)

n-1
‘Cj‘él
From (5) i-o
Remark 1.13. If &~ ="""=3,=0 then the solution to the recurrence relation
(12)is Co="""=Cy =0 gnd Cns= a,/ a, , thus the analytic polynomial .

N-1
kpeH™ s ko (2)=(aslay)Z . Therefore the norm of every KeH™ that

satisfies ® —K® €H™ js such that
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[k1l. > —Hk H

Therefore, To is hyponormal if and only if |a71|s| aN| :
The following theorem and corollary concern the extremal cases : |a_m|=|aN| #0

o &
Proof. @nv=""=2,=0 _ then the solution is %=""=Cv2=0 = ay | thus
~ L a a
k eH”=) ¢z’ C, =—x Chom =| =2
’ Z : , g, since ) ay implies  that
N-2
Cna = % Oy = a_—N_Z Ci <1
N av | implies =0 from the proposition (1.2.21) and
Ikl 22 Ikl

k| <> |c|<1 2 =
2 S Y1 o
Therefor , To is hyponormal if and only if |a[<[ay] :
Theorem 1.14. There exists a finite Blaschke product be&' () of degree equal to
the rank of [Tw ,T¢] .

()3 ae”
qp eI — an eIn

Theorem 1.15. Suppose that n—m , where M< N ang

lan[<[ay[#0  ang 1et€(®) SH e the subset of all keH” for which
[l <1 and ¢-k@ €H” The following statements are equivalent .

(i) The Toeplitz operator Ty is hyponormal .

a, -
det[ m+) _J:O
(ii) Forall kK=1..,N-1 I .

(i) The following equation in €™ holds :

a_l aN—m+l
o -2 aN—m+2
a‘N ; = a‘—m :
a N
—m ay (11)

(iv)

Moreover, if Ty is hyponormal , then the rank of [Tw ,Tq,] is N-m,
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Proof . Let € "+Cn-abe the solution to (8) ; because |2 |=ay|20

,we have
[Cx-nl =1 Note that if M<N _ then S =""=Cymn1=0. If a function keH"

satisfies # —k@<€H™ then the Fourier series expansion of k is
N-1 . 0 .

k=>ce+> be™
j=0 n=N

From fact 11 21K[, we have 1% 1. > |evn|=1 + iff for some J>(N—m) or

for some set of P €C

n>N there is a nonzero Fourier coefficient Ci or Pr of k , then
||k||w2max{,/\ cunl o] cNm|2+|bn|2} o1

Thus K[, =1 if and only if ®n-m is the only nonzero Fourier coefficient of k .

Therefore E(p) can have at most one element: namely CymZ Hence ,
statements (i) and (iv) are equivalent . Now statement (i) and (ii) are equivalene;

clearly (ii) and (iii) are exact same statement. Suppose that Ty is hyponormal .

N-m
Then there exists K€€(#) and X(2)=CnZ"™" Hence , for every

k=1,---,m-1,
2
a_ (- a_,
det " _
Ank) A

det( J =0
Conversely, if An-k) Ay forall K=1---,N -1 then

1

ay

0 = ‘ CN—m+k

a'—(m—k) a,

2 | &mw a,
det =0

| CN—m+l | =

N

N-1) Ay

ai ( &_(;3-1) ~Cnom ay, ) ‘ =
N a(

and hence

|CN—m+2|:

1 . : kp(z): z i
, We have , that the analytic polynomial i=0 s of the form

and | Cnonl =

Ko(2)=CunZ" "and therefore K €€(#) This completes the proof that
statements (i) and (ii) are equivalent.
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_]a

—m

E(p —{ ZN”‘}
Lastly, if Teis hyponormal , then ay . Because the self

commentator [Tw ’Tw] has finite rank , ([18] , theorem 10 ) , there is only one
E(p):b(z)= 2z

element in ay , Which is a finite Blaschke product of degree N-

m.

(o(eie): i aneina

[/ =lan]#0 ang 1et #(?)=H" pe the subset of all keH™ for which 1% . <

Corollary 1.16. Suppose that . where M<N 3ang

and #—k@eH" the following statements are equivalent :

T

(i) The Toeplitz operator "¢ is hyponormal .

det[ v ;mJ:O
(ii) Forall k=1..,N-1 Amn N .

T

Proof. Suppose ‘¢ is hyponormal from Theorem 1.12. the analytic polynomial (ii)

holds for all k=1....,N =1 For backward implication since [ |#0 ang [aa|0 |

a‘—(m—k) a_, _ _
det £ | T2 mgn A nAn =2y Ay
N

N-k)

= a—m-¢-k§N - a—m+kg =0

Then from proposition 1.11.and the remarks 1.12. and 1.13. T, is hyponormal
Example 1.17. Ty is hyponormal with rank-2self commutator rank [Twz ,T(/,J =2 :
?, (eia):e—iza+e—i6+ei36+ei40
Prove that Te. is hyponormal with rank-2self commutator .
a‘—(m—n) a m
k:1=1,..,N—1,det _|=0
Proof. LetC=C=-:Cym1=0, A 8, ,
: N a a a a5y (N
i0\__ in@ _ _-m _ Y ma —m-2 __ _ m (N l)
(0(9 )_n_z_m ane | C0 EN , C—m—l - gN ’ aN _C—m—2"'c—m—(N—l) - aN
Then
e’ e _e S0 _g 50 _
p 130 40 - -

Then To. is hyponormal .
Example 1.18. Applied Theorem 1.15 to show that the Toeplitz operator with
symbol
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(o( eie)ze—ise_e—me+e—i28+e—i9+2€i20_2ei49+2ei5€

Whose coefficients satisfy the symmetric relation?

a, a,
— | a a_
ay | . =ay|

a'—N a—N

But for which there is no symmetry involving @1and & is hyponormal .

(o(eie): i aneine
n=—N

3 = Ze—i5€/e—iN9
N

a3 — 26459/606’
> =

a, = 28459/8439
a

_Ne—iNG :e—i50 — a_N — e—iSH/e—iNB
e—i59 e—i50 e—i59
a,= ai? ya,= ai20 3= ai%0
efwa/eme 2e59/e—00
) ) ei5n9 eiSH ) ) 2e—i56 e—i30
zefme/efme . / — 8—69/64N9 ‘ /
e—BH/e—NH 2e-56/e—me
. N .
w(e.a):zaneme T - . .
Corollary 1.19. If n——m , then ‘¢ is normal if and only if
m=N '|a—N|:|aN|and
o &
ay : =a | :
a _
—N aN (12)
k) Ay
det =0
- _ a a,
Proof. I1f M=N . [aq| En o and et (N-k) N for all

k=1..N-1  then by Theorem 1.15. , T» is hyponormal and rank

[T(p 'T¢]= N-m=o ; that is Ty normal . Conversely , if Ty is normal, then by [
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Brown — Halmos [13] ], there are scalars @:/5<€Cand areal —value ¥ €L" such

that T,=2T, AL As T, is a hermitian Toeplitz operator , the Fourier
coefficients of ¥ satisfy w(n)=v(-")  for all n ; in particular

el [au[=[y (N)] =[w(-N) |=|a]|ay]| Showing that |2w|=lax]  Thus |
N=m and (12) holds .
Remark 1.20. For trigonometric polynomials ¢ satisfying the assumptions of

theorem 1.15. the question of whether or not the Toeplitz operator T, s

hyponormal is completely independent of the values the coefficients """+ 8n-m
of ¢.

Example 1.21. Consider following two trigonometric polynomials:

o, (eie):e
(pz(eiﬂ):e—i29+e—i9+ei39+ei49

—-i20 +ei36 +ei40

Suggests that - is less likely than % to induce ahyponorrmal Toepllitz operator ,

as ©2 is " less analytic " in that ( conanalytic ) term €™’ in present is 2 but not

in 1 However the opposite is true : Theorem 1.15. shows that Tois hyponormal
T

(‘with rank -2 selfcommutator ) where as '« is not .

Theorem 1.22. Suppose that

(D elH an e|n9

( )n—ZN ,where N 22, | 2] #0 and the coefficients of ¢ satisfy
a, a,
a, a,
ay : =ay| :

a _
N &) . (13)

Then Tois hyponoormal if only if

2
al’-la > det[a‘1 a‘“]
lay|” —|ay] \/ _—

1 2 ) N-L g2
—=(1-
Where d 2( ESTIEN )z":2|a”| and d is takento be 0 of N =-2 .

+d%—d

(14)
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Proof. Assume (14) holds; we are to prove that Ty is hyponormal . Solving (4)

N-1
under the condition (13) produces the analytic polynomial K (2)=Cp+Cy2 ,

a, ay

Cys :( a, )72 det

where € =2 /3y and 4 ay
(14) implies that

1] 2o +07 [y * ~da, [ (15)

The right-hand side of (19) nonnegative and so | /<1,

Now if |Co| =1 , then |CN—1|=0 and T is normal : assume ,therefore , that

|Co| <1 | et keH? pe function with Fourier series expansion

k= kp ( ei9)+cN71 i (_1)” (CNl Co ] pi(N-1)(n+1)0

As K(n)=¢, for n=0,--,N=1 it remains only to prove that k is in the unit
boll of H™.

CN—l CO
o=
Let |CN71| , Which is a complex number of modules |a| = | c0| <1 then
R R T
n=l N-1

= Cna C°m+(1— C 2zN-1)+ 1——|CN‘1| C
1-fof (m . o )
N Chny i(_CNlCOJ (1—|C0|2)(ZN71)M1

:|.—|C0|2 n-1 |CN—1|
Cy

e I

Y 2 —a 1_M
1—|a|2(1—&z“1}+[ 1-|af )

— -1
Because the function W (W—=a )(1=@W) " is 3 linear fractional transformation,

|2

mapping T onto itself, we obtain the estimate

ZN_l—Ol| |CN—1| |CN—1| |CN*1|

+| 1- G |< +1- =1
1-a " ( 1-|af & 1-|af 1-|a|

t keE (o) .

| Cuyf
1-|al

[k, <

Which proves tha
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Conversely, suppose now that T, is hyponormal with respect to the orthonormal

basis {Z :n:0,1,~--} of H? | the selfcommutator of To is a matrix with (£,V) -

Xy = (aj—ﬂ Ajy —8,j 8 )

entry given by j=0 where #,V=012,...
Thus in particular,

N
o= (2 ~la.")

n=1

2 2
ANaN1 = | aN| _| a—N|

Qong = Qg =8y, — 88
The operator [Tw 1T¢>]
submatrix

is positive and, therefore, so is its 2x2 principal
2 Aon-

Oyy  Anagna
Hence %o and #n-1n-1 are nonnegative and

Ay Con—

2
0< det = Qp AN _‘ aON—l‘

The symmetry condition (17) Yields las[=[a/a] || for n=2...N-1
Direct computation reveals that

R 2 J— — 2
(af . Nau -lauf )} as-ayal -[aya-a,a,
and so

Ay QN1
0<det

Ong  Oyoana
2
(1l o) +(1af o) (o -l
N-1

— — 2
Java-aya] +([af -auf) X (laf -laf)
n=2

J— — 2
=(| aN|2 _|a—N|2) _‘aN ay-anag ‘

2 2 a_y lu 2
o(laf anf)| -2 | Xl
N n=
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Therefore,

2
|aN|2|aN|2>\/ det(aé_il Z__Nj +d%—-d
N

2

1 2 2\
d==|1-|a,| |a a,
Where 2( [ 12l )nz-z:
N
¢ ei@ — an eln0
Corollary 1.23. If ( ) n:Z—N is such that
. a
a, a,
a : =a_y :
Pon a) (16)

thenTo is hyponormal if and only if ay|<|ay]

Theorem 1.24. ?€PC |f and only if it is right continuous and has both a left —
and right — hand limit at every point.
There are certain algebraic relations among Toeplitz operators whose symbols

2
come from these classes including T, T,=T, €K ( H )

goeH°°(T)+C(T) and y/eLw(T) 1 (17)

for every

And the commutator lT«p ’TwJ IS compact for every
¢.yebPC (18)
Now we add to these relations the following one .
Lemma 1.25. If Tois aToeplitz operator with quasicontinuous symbol ¢ , and if

f is an analytic function on an open set containing U(Trp) , then Trop ~ f (T¢)is a
compact operator.

Proof . Assume that ?€QC . Recall from [8,] that if weH”+C(T) ,then Tv is

H*+C(T)  Therefore for every

ﬂ,ga(T(p) , both =4 and @-4 are invertible in H°°+C(T) : hence

Fredholm if and only if ¥ is invertible in

(p—2)" €QC. Using this fact together with (21) we have for ¥<L” and

A, ueC
2
Tou T,,,T(M),l T(w)w(w)’l EK( H ) , Whenever ’“w(Tw).
The argument above extend to rational functions to yield: if r is any rational
2
function with all of its poles outside of @(T) , then T(To)~Trop€K(H*)
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Suppose f is an analytic function on an open set containing G(Tgo) . By Runge's
theorem there exists a sequence of rational functions " such that the poles of '
lie outside of G(Tw) and fn = f uniformaly on O-(Tw). Thus (T¢)—> f (T(p) in
the norm- topology of '—(H 2) . Furthermore because " 0?— 0@ yniformaly |,
we have Toov >To in the norm - topology . Hence

Tiop = 1 (Tw): Iim(T,nw —h ( T‘/’)) , which is compact .

Lemma (1.25) dose not extent to piecewise continuous symbols ?€PC | as we

2 + .
can not guarantee that Tp =T € K(H ) for each N€Z" | For example , if

ie e —_— - - -
o(€”)=2T. —1T. ~where *T. and ¥T. are characteristic , functions of ,

2
T, -1

receptively , the upper semicircle and the lower semicircle , then is not

compact .
Corollary 1.26. If Tois Toeplitz operator with quasicontinuous symbol ¢ , then

for every analytic function f on an open set containing O-(Tw),
(I) W( f (Ttp))z O-(Tfocﬂ) , and

(i) f(Tw) is essentially normal and is unitarily equivalent to a compact

perturbation of f(T¢)@M M

fopon L(T),
Proof. Because the Weyl spectrum is stable under the compact perturbations , if
follows from Lemma (1.25) that

fop where "“'feis the operator of multiplication by

w( f (T, )=w(Te, )=o(Ty,) , which proves statement (i) . To prove (ii) ,
observe that because QC is a closed algebra , the composition of the analytic

function f with ©#€QC produces a quasicontinuous function fo@eQC
Moreover , by (21) , every Toeplitz operator with quaasicontinuous symbol is

: M L*(T) :
essentially normal the (normal ) Laurent operator "™'foe 0N has its
spectrum contained with the spectrum of the ( essentially normal ) Toeplitz

T

operator 'foe. Thus there is the following relationship involving the essentially

normal operators f(Tw)and Mfow@f(Tw) :
o (T, )N, )=c.(f(T,) and Sp<f<T¢>)>=S p<f(T¢)@Mf0¢) . where

SP(T) denotes the spectral picture , of an operator T . (The spectral picture

SP(T)is the structure consisting , of the set @ (T) | the collection of holes and
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pseudoholes in Ce (T) , and the Fredholm indices associated with these holes and
pseudo holes .) Thus it follows from the Brown —Douglas — Fill more [23] that

f(Tw)is compalent to f(Tw)eaM

operator W and a compact k such that
w(f(T,)®M,,, )W +K=F(T,)

foein the sense that there exists a unitary

Remark 1.27. Corollary (1.26) (i) saying that G( f(TfP))\G(TfW) consist of
holes with winding number zero.

Theorem 1.28. If in aBanach algebra Al ai]i is asequence of elements commuting

with @€ A and such that & =2  then limo(a)=c(a)
The following Lemma is application of above Theorem .

Lemma 1.29 If {Tn}n is a sequence of operators convering to an operator T and

such that [T..T] Is a compact for each n , then limo, (T,)=0, (T )
Proof . From Theorem (1.28) anf f 7 denotes the canonical homomorpism of

L(H )onto the Calkin algebra L(H )/K( H ) then the assumption give that
#(T,)—=>7z[T) and [#(T,), 7(T)]=0 for each n . Hence

im o (7 (T, )=c(7(T)) ; thatis, lim &, (T,)=0.(T)

Remark 1.30. Because Tn =T by the upper — semi continuity of the spectrum ,
there is apositive integer N such that o(T,)cv whenever "> N and V is an
open set containing e (T)

Theorem 1.31. Suppose 1T €L(H) for N€Z" are such that Tr converges to
T . Suppose f is any analytic function whose domain is an open set V containing

o(T) 1f [T T1eK(H) for each n, then
im w( £ (T, )=w( f (T) (19)

Proof . If Tn and T commute modulo the compact operators then , whenever T,
and T exist, Tn.T-T. and T~ all commute modulo the compact operators
Therefore "(Ta) and r(T) also commute modulo K(H) whenever r is a
rational function with no poles in o(T) and n is sufficiently large . Using
Runge's theorem we approximate f on compact subsets of V by rational
functions’i who poles lie off of V . So there exists a sequence of rational
functions " whose poles line outside of V and i = f uniformly on compact

subsets of V. If ">N then by the function calculus ,
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f(Tn)f(T)_f(T)f(Tn)zlimi(ri(Tn)ri(T)_ri(T)ri(Tn))

Which is compact for each n. Furthermore ,

1001 (N ] (2T =)
<37 A0 1 ()] e (4-7) - (2-T)"

Where I' is the boundary of V and (T) denote the are length of I" . The right

— hand side of the above inequality converges to 0, and so f(T,)—f(T) . By
Lemma (1.29) ,

Limo, (f(T,))=c. (f(T))
The argument used by J.B . Con way and B .B Morel in [5] used here to obtan the
conclusion MW (T.))=(f(T)) |
We now prve the following theorem .

Theorem 1.32: The restriction of o to the manifold L of all Toeplitz operators is
contrnuous at every Toeplitz operator with quasi continuous symbol . Moreover ,

if ¥QC.0,€L” and [To ~To | =0 then im wit (T, )=c(T,,,).

Proof. suppose #<€QC.¢,€L” and ITo ~To[ =0 Then by (21)

2 .
[T<an ’Tere K(H ) . Therefore by theorem (1.2.45) M W(T(pn )=W(T¢) , and hence
limo(T, )=(T,)
Also, because fo9eQC and fop, =>foe if follows from lemma (1.2.39)

that - W( f(Twn)):"mo'(-rfo%):O'(Tfmp) |
The argument of theorem 1.32. is limited to quasi continuous symbols , as we

need is ensure that [T% ’T«aJ IS compact for every n.

L L

Corollary 1.33.The restriction of o to -rc is continuous , where -rc is the set of
all Toeplitz operators having symbols that are uniform limits of piecewise
continuous functions.

With a piecewise continuous function ¢ , we can obtain a
i6- o .
continuous curve ¢ by joining ¢’(eg 0) and q’(e )(0S0<2”) by the line
160 i0
segment[(p(e ).o(e )J .

— #
Theorem 1.34. For every 9<PC o, (T,)=¢"(T) and o(T,) consists of ¢ (T)
together with some of its holes .
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Remark 1.35. observes that the results which developing Toeplitz operators with
piecewise continuous symbols in fact hold , more generally , for symbols

pel”(T) having the property that

V, (p)= ¢l ¢(4,—-€,4,+¢€)]

e>0 (20)
Is contained in same line segment L;, foreach % € in this case

Ue(qu):U convV, (@)
Ae (21)

Definition 1.36. The function ¢ which satisfying (20) call Douglas function ; let

D( T) denote the set of all Douglas functions in L (T) :

Definition 1.37. Let G:L —>C(8H ) denote the Gelfand transform , where

OH" s the Silov poundary of H (T)("e" OH" s the maximal ideal space

of L) . 1f @<L’ then by the Gelfand theory |, ¢(8H ) is the spectrum of ¢ |

as an element of L™ | namely , (p( oH ) is the closure of the essential range ess-

ran ¢ of ¢ . Now given (DELOO(T) , let Vﬁo(‘P)be as in (20) . If ¢ has the

property that 0 conv Vi, ( CD)g@(an) , or that 0 conv Vzg(¢’) is contained in

some line segment L., for each &€ T , then ¢ will be called pseudo —
piecewise continuous . Write PPC for the set of all pseudo — piecewise
continuous functions in L™

For every %<l and p<D(T) . conv V., (p)=aconvv, (p) . and so

D(T)=PPC |t pePPC  then (21) ( together with the fact that T» is not a

Fredholm operator whenever ¢ cannot be inverted in L (T)

|J aconwv, (p)=o, (Tw)
e . (22)

D(T)g PPC

gives

The following example shows that the inclusion IS proper .

pel”(T) ¢ 9ePPc\D(T)

Example 1.38. There exists such tha

Proof. Set
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. 1.1
elﬁ[lJrESIng] O <9<£]
3
_ i372[2 27-2 9
ol &) - (Li}zeen-s( ) (2<pe0r-2)
T T T T
27 —6+isin (272—£<6?<27r]
27— T

At % =0 the graphs of # (T) and V. (#)can by shown . Therefore €ONVV, ()

is contained in no line segment and hence (/’ED(T) But evidently
oConwV, () for each %€ . In fact,

U v, ( (o)={ (ﬁ(;/):;/eéH“’}

A, €T

Therefore #€PPC |

Theorem 1.39.1f pel”(T)
C|o, ( T(p) Coano(T)

and Cis a rectifiable simple closed curve lying in

then lies either entirely inside entirely outside of C .

Definition 1.40. The map 00:L(H ) —>Kgsengs every operator Tel(H ) the

topological boundary 00(T) ot its spectrum o(T),

Theorem 1.41. The restriction of 90 to the set of all Tpoelitz operator with
pseudo-piecewise continuous symbol is lower-semicontinuous at each Toeplitz

operator with Douglas symbol ; that is , if % <P Pc,peD(T) g T, -T,[-0

then 80‘(T¢)gliminf80(T¢n) |

liminf o( T, )=c( liminf o(T, ) ) Liminf (T, )

Proof . observe that . Since

co(T int( liminf (7, ))<into(T,)

w) and hence , It suffices to show that

oo (T,)climinfo(T, ) Agliminfo(T, )

. Assume . Then there exists a

neighborhood N, (2 )of Asuch that doesnot intersect in finitely many J(Twn) :

Thus we choose a subsequence {(pna}of {%}such that To, —H IS in veritable for
each#€ N ( A), which says that %n (T) NN, (4 ):Qfor each M. Since
| ool = H To, = To H_’O, there exists a neighborhood N,(1) , which says that

¢(T)ﬂ N, ( A ):0 and N, ( A )g Nl( A ) There are two cases to consider.
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Case (i) : suppose (/’(T) winds around Nz(’z). By Theorem 1.34. , but since by

25), N=(2)=C/o.(T,) it follows that either N2(2)0:(T,)=0  Therefore
redo(T,)

Case (ii) : Suppose ¢(T) does not wind around N»(2) . We now claim that
iz ) conwvV, (9)

A, €T
On the contrary , we assume that AeConvwV, (9) for some A< T . Since

o(T)NN,(2)=0 peD(T), 2

, and must lie in some line segment L., (o) such

that b, (2)N(T) =0 gjee ‘ Pn, _("H_’O , we have

V. (2)-V, () and hence 9ConwV, (@, )>aconV, (@)

But since 9%V, (®) is contained in a line segment and , by (26) ,

8conVV%((pni)g0'e(T%i) , it follows that for each neighborhood N(2) | there

exists a#€N(4) such that ' ~# is not Fredholm , which gives a contradictio.

Ae ] Convv, (¢)
Therefore %<7 . Thus by (26), T, =4 is Fredholm . Now because

for every T eL(H) | 9o (T \o.(T) consists of isolated points of o(T) . We

conclude ’15580(1})) is connected. This complete the proof.

We now have the extension of corollary 1.26 with the following result.

Theorem 1.42.The restriction of o to the set of all Toeplitz operators with pseudo
piecewise continuous symbols is continuous at each Toeplitz operator with
Douglas symbl.

o gonePPC,goeD(T

Proof . Suppos ) and T, T, [0 By theorem (1.41)

o(T,) = (liminfo(T, ) ) |
Where k denotes the polynomial - convex hull of k consequently, the passage
from Iminf o (T, ) 1o o(T,) is the filling of some holes of lminf o(T,).
Thus if G(qu) has no holes , then clearly U(Tw):"m inf G<T¢n) CAf G(Tw) has a
hole © , then 0 Qcan be regarded as a" local closed curve " see [9] determined
by comVi (@) As anU%eT convV, _(¢)= UAU oconvV, (o)

0Q= [ oconvv, (o)
we have foes for some subset S of T .
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aconvV, (¢, )—>J aConvV, (o)
Because also 4eT 2,€T , we conclude that for

sufficiently large "i, #n be haves like a Douglas function locally on S. Thus the
index theory for continuous symbols can be applied for this local closed curve

[9].
But |20 =2l = and so for sufficiently large n,

—ind (Tw—l):wn((p—/l):Wn(gon—l):—ind(T% _’1) for each A€ | Hence

G(Tw)‘ lim inf a(T%) has no hole with non — zero winding number , and
consequently

o(T,)=Liminf (T, )
Now we show Welyl's theorem for analytic functions of toeplitz operator:
Theorem 1.43. weyl's theorem holds for T if
W(T ):G(T)\”OO(T) ,
Where Zoo(T) is the set of isolated points of o(T) that are eigenvalues of finite
multiplicity.
Theorem 1.44. The set of operators for which Weyl's theorem holds includes all
semiformal operators and all Toeplitz operators .

Lemma 1.45. suppose that ¢ is continuous and fis an analytic function defined
on some open set containing G(T«)) . Then
ol 1.,)= Flal(T,)) 23)

and equality occurs if and only if weyl’s theorem holds for f (T(/’) .
Proof . By corollary (1.2.40) ,

J(Tfow)zw( f(Tw))ga( f(Tt/’)):f(a(Tw» . Because o(T) is connected ,
SO is f(G(Tw)): < ( f (Tw)) ; therefore the set ”oo( f (Tw)) is empty . Again by
corollary (1.2.40) , w( (T, )= (Tw,) and so

w((T,))=o (£ (T, \2o0 (£ (T,)) 1f and only if @ (Trwe) = f(o(T,))

Remark 1.46. If ¢ is not continuous , it is possible for weyl’e theorem to hold for

some f(Tw) without a(wa) being equal to f(U(Tga)) . On example is as
follows .

i0\ _ Ai0/3
Let ‘/’( € ) =e"" (00 <2x7) , a piecewise continuous function. The operator

T, is invertible but '# is not * hence OEJ(Twz)\{G(Tw)}Z. However

2\ _ 2 2 2
W(Tco )_G(T«J ) ,and oo (T(p ) is empty ; Therefore weyl’s theorem holds for T
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2
Question 1.47. If Tois aToeplitz operators , then does weyl’s theorem hold for T,
?

Answer: isno .
Note: The answer of 1.47. begin with a spectral property of Toeplitz operators

with continuous symbols .

Example 1.48.There exists acontinuous function (/’EC(T) such that

2
O'(T(pz)i{a(Tw)} .
Proof . Let ¢ be defined by
i —e%? 41 (OSOS 72')
(p( ¢ G)Z{e‘m -1 (7<0<27)

The orientation of the graph of ¢ can be shown clearly ¢ is continuous and , ¢

has winding number +1 with respect to the hole of C; the hole of C2has winding
number -1 . Thus we have

o, (T(p):(p(T) and a( T(p):coano(T)

2
On the other hand , straightforward calculation shows that (T) is the cardioid

2
r=2(1+cosd) |, particular , ¢ (T) traverses the cardioid once in
acounterclockwise direction and then traverses the cardioid once in aclock wise
direction .

T)

2 _ 2
Thus W (2 =4)=Otor each 4in the hole of # (T) . Hence To—s is aweyl

2
operator and is therefore , invertible for each 4 in the hole of 4 (T) This

implies  that G(Twz) is the cardioid =2(1+c0sf) Byt because

2 2
{G(T«))} :{coano(T)} ={(r,¢9).r§2(1+c039)} if follows
2
0'(T(p2 ) #* {O'(T(p)}
Remark 1.49. It is instructive to observe that lemma 1.45. gives a necessary
condition for T to be hyponormal . we recall [17] hat if T eL(H) s hyponormal
, then weyl’s theorem holds for every f (T) . conjunction with lemma 1.45. ,

this is to say that if Ty s hyponormal , then O'(wa)—f(a(T(p))_ But this

necessary condition is not sufficient , for a slight extension of theorem [1] , [17]
which show that weyl’s theorem holds for f(Tw) , Where T, is the

cohyponormal Toeplitz operator with symbol ¢(ei9)=eig ; hence

(T, )= f(o(T,),
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We conclude by studying continuous symbols ¢ that have the property that
weyl’s theorem holds for f(Tq)) , for every analytic function f on a

neighourhood of G(T(p) .

Theorem 1.50. If (/’EC(T) Is such that G(Tw) has planar Lebesgue measure
zero, then a(wa): f (G(Tw )) for every analytic function f defined on an open

set containing o(T,) .
Proof. As ¢ is continuous , so is [0® and thus JE(Tw): <”(T) and

ae( f(Tw)):GE(TfW):fO(/’(T) . The planar measure of o(T,) is zero :

T

because © ( w) IS a compact connected set consisting of (”(T) and some of its

holes , it follows that aG(Tgo):Ge (T¢):0(T¢) , Which is just a continuous curve .
Furthermore, as analytic functions map open connected sets on to open connected

open sets , we have that oo f (Tw ))=‘7e( f (T;a ))=‘7( f (T;a » . Thus

o( (T, )ec(Tw,)  which together with (23) gives the result.
Remark 1.51.We note here that Toeplitz operators whose symbol satisfies the
hypothesis of theorem 1.50 are essentially normal of type “ normal + compact “ .

To see this let D be a diagonal operator whose spectrum is (/’(T) . Because 1o
and D are both essentially normal and S P(T(/,):S P(D) , it follows from the
Brown — Douglas — Fillmore theorem that T, and D are complent ; that is ,
T,=N+K for some normal operator N on H? and some KeK(H?) . this
observation is of interest because if © (Tw) has planar Lebesgue measure zero and

T, is normal and

, further | if To is hyponormal , then by putnam’s inequality
#(T) must be a line segment .

Theorem 1.52. If the winding number of 9<C(T) with respect to each hole of
¢(T) IS nonnegative ( or is nonpositive ) , then U(wa): f (O-(Trp)) for every
analytic function defined on an open set containing O-(Tzo) :

Proof . suppose that the holes of (p(T) have only nonnegative winding numbers .

Since ¢ is continuous , it follows that e (Tw):€0(T) and

o (Tip =0 (£(T, )= (0. (T,)) (24)
If (/’(T) has no holes or has holes of winding number zero only , then

U(T¢)=Ge (T<p) - thus
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t(a(T,)=1 (0. (T, )=0. (£(T, )=0. (T, )z (Ty, ),
Which together with (23) gives J(Tf0¢)= f(U(qu)) :

Now assume that there exists at least a hole € of (”(T) such that wn(¢—ﬂ,)¢0

for all A€Q Namely, Wn(p—2)=w>0 for all A€Q In view of (24) , it
sufficient to show that

tHo(T N (0. (T, )eo (T, Nou(Th,) | Thus the proof is completed by
showing that if A€ | then f(2)eo(Tw,) Suppose that 4€Q ; thus To =4 is
Frednolm with "9 (T, =2 )==Wn(p=2)==W<0 \ite
f(z)-f(A)=(z-2)(z—m)" . (z2—-p,)" F(z)'
where @ <2 mea(T,)(1<i<n) o4 F(2) is analytic and has no zeros in
G(T(p) . We have

fop—f(2)=(p-2)(@—m)"..(p—u,)" Fop

From (24) , Tfee -1(2) is Fredholm and hence f o@—f (1) isinvertibleon . So
each ®— 4 (1<i<n) and Fo® vanish nowhere on T . Therefore T and Troo
are all Fredholm . By assumption , wn(@—4)>0 , and because Fo® has no
Zeros inG(qu),Wn( Fop)=0  Thus

ind (TWfw)=wn{(¢>—A)((p—/va)“l---((p—un)“” F(co)}

=—wn( (p—;t)—Z:l:ai wn( @—1)<0

Which shows that Tree-1(2) is not Awelye operator and hence is not invertible.

We conclude that f(;t)ea(wa) . The proof of case of non positive winding
numbers is similar

a
P(—+sz
Example (1.2.67) [4] : If # is of the form Z where @,D€R and P s

any polynomial , then
G(Tfow): f (U(Ttp)) .

Proof. if a=b , then T, is hermitian and the desired conclusion is clear . If @%b ,

w=—+b

set

w(T)=

z
. Then

(uv)ec :(bia)z + (biajz :1}
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Which is a circle or an ellipse . Thus o(T)=(poy)(T)=p(w)(T) , which has
no holes has exactly one hole ( because polynomials map continuous curves onto
conclusion curves and open sets onto open sets ) . The conclusion nows follows
from Theorem 1.52. .

Remark 1.53. Lemma 1.45. and theorem 1.50, 1.52 hold for quasicontinuous

symbol # . In this case , if Tois Fredholm , then the index of To is the negative of
the winding number with respect to the origin of the curve @(rem) for
1—5< r<l1 , and

o (T, N cl{gb (re’)1-s<r <1}

0<o<1

Where ¢ is the harmonic extension of ¢ to the open unit disk D [8].

Remark 1.55.The index of a hyponormal operator is always nonpositive and
therefore, in general , the holes of the essential spectrum of a hyponormal
operator cannot have negative winding numbers . This fact may lead one to

believe that if ¢(T) has no hole with negative winding number ( in particular , in

case that ¢ is atrigonometric polynomial . Then T, is hyponormal . But such is
not the case . For example , if

ng(eie):efzie_'_eia+ezia and %(eia):efzia

-0 i0 2i0
—e ' rel e o a(T) has just

one essential hole whose winding number is +1 , and ¢2(T) has no hole . as

shown in figure (4) . But the theorem (1.41) , Toand Te.both fail to be
hyponormal .

Remark 1.56. Recall [23] that an operator T €L(H) is quasitriangular if there

exists an increasing sequence {P.} of projections of finite rank in L(H) that
PTP,-TP,

converges strongly to the identity and satisfies ‘ -0 By work of
A postal , Foias, and Voiculescu , it is known that T is quasitriangular if and only

if SP(T) contains no hole or pseudohole with negative winding number .

Rewrite theorem 1.52. as follows . If To is quasitriangular ( or To is a

quasitriangular ) Toeplitz operator with continuous symbol ¢ | then

*

a(wa):f(a(Tq,)) . In Remark 1.54. we showed that even if T; IS a

quasitriangular operator ( with trigonometric polynomial symbol ¢ ) , T, may
fail to be hyponormal . In spite of this , it would be interesting to have amethod
by which one could determine the winding number of curves given by
trigonometric polynomials with respect to the various holes these polynomial
produce . We expect the solution will make extensive use of Theorem 1.52.
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Spectrum of Toeplitz operators with Harmonic polynomial symbols on Bergman
space

In the following Theorem we investigate the structure of the spectrum of the
Toeplitz operator T,,,, Via certain analytic properties:

Theorem 2.1( Pearcy ): Let T be a bounded linear operator on a Hilbert space H
and H be "ahole in g,( T) " ( which is a bounded componentof C\ o.( T ) )
such that
Index (T— AI) =0,A€H ,

Then either

(a)Hno(T) =0 ,

(b) HNna(T) € @ ,or

(c)HnN o( T) isacountable set of isolated eigenvalues of T, each
having finite multiplicity. Furthermore, the intersection of a( T) with the
unbounded component of C \ g.( T ) isa countable set of isolated eigenvalues
of T, each of which has finite multiplicity. The following theorem gives a
characterization for the eigenvalues of a class of Toeplitz operators with
harmonic symbols on the Bergman space, which is useful for us to study the
isolated points in the spectra of Toeplitz operators with some bounded harmonic
symbols. The following theorem gives a characterization for the eigenvalues of a
class of Toeplitz operators with harmonic symbols on the Bergman space, which
is useful for us to study the isolated points in the spectra of Toeplitz operators
with some bounded harmonic symbols.
Theorem 2.2. Let p be a function in H* n ¢ (D) .Suppose that A is a complex
number not in the essential spectrum of the Toeplitz operator T,,, . Then 4 is an
eigenvalue of T,,,, if and only if either 1 + z[p(z) — A] dose not vanish on the

unit disk or 1 + z[p(z) — A] has finitely many simple zeros {z, ..., z.} in the
unit disk Which satisfy
, nj+2 .
ij p(zj) = ﬁ for some integer n; €
{0,1,2, ..} withj =12, ..., k.
The above theorem leads to the following complete
characterization on the invertibility of the Toeplitz operator T,,, withp € H* n

¢ (D)Immediately.
Theorem 2.3. Let p be a functionin H* N C (Q).Then the Toeplitz operator T,

is invertible on the Bergman space L2 if and only if the following two conditions
hold:

(i) 1 + zp has no zeros on the unit circle dD ;

(if) 1 + zp has exactly one simple zero z, in the open disk

D which satisfies that

’ n+2
7§ P(zo) — el 0

For any nonnegative integer n.
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Now we show that the spectrum of Toeplitz operator T,,, is connected for
every quadratic polynomial p .

Theorem 3.3. Let ¢(z) =z + p(z) , where p a quadratic polynomial is. The
spectrum of the is Toeplitz operator T, given by

o(T,) = ¢ (@D)U {1 €C:2¢ ¢(dD) and wind(p(dD),2) # 0},

Which coincides with the spectrum of the corresponding Hardy-
Toeplitz operator with symbol e~ + p(e“’) . Hence the spectrum

Of T, is connected for every p(z) = az? + bz + c with a,b,c € C

Corollary 3.4. Let ¢(z) = z+ (az? + bz + ¢) where a, b and ¢ are all complex
constants. Then the Toeplitz operator T,, is invertible if and only if

The cubic polynomial az3 + bz? + cz + 1 has a unique zero in the
unit disk D with multiplicity 1, but does not have any

Zero on the unit circle oD.

Corollary 3.5. ¢(z) = z+ (az? + bz + ¢ ) witha,b,c € C .Then we have
O'(T(p) c clos[p(D)].

CONCLUSION

This paper establishes conditions under which the Toeplitz operators T, is
hyponormal with ¢ is trigonormaltic polynomial

¢(eia): ian pine
n=—N

. where an #0

If =N . where @ #0 and if %:G-Cv1€ L are obtained from
a
Cp=—r
the coefficients of ¢ by solving the recurrence relation Ay

n-1
Cn( EN ) l[a—Nm _zcjaN—m—j
=0
N-1
PAAES!

Then, -0
And with ¢ is trigonormaltic polynomial

] , forn=1, ..., N-1

@ eig _ aneim9 _ _
( ) n:Zm .then To is normal if and only if M =N Jal=laulang
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AR
..le'g.)l

QD
2
Il
QD
=

ay ay
And investigate the structure of the spectral picture of the Toeplitz operators
T,+p With harmonic symbols on Bergman space .And we have result that If

@(z) =z+ (az?+bz+c) wherea, b and ¢ are all complex constants. Then
the Toeplitz operator T,, is invertible if and only if the cubic polynomial az3 +

bz? + cz + 1 has a unique zero in the unit disk D with multiplicity 1, but does
not have any Zero on the unit circle éD.
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